Universo e Multiverso

De rerum natura
Página de abertura de cópia manuscrita em 1483 do De Rerum Natura

A palavra universo é derivada do Latim universum, originada da contração poética Unvorsum usada por Lucrécio em seu livro De rerum natura (Sobre a natureza das coisas). Ela combina o prefixo uni (um) com vorsum que significa “o que se moveu, girou ou se alterou”. O imagem do todo se movendo como unidade em círculos tem raiz no pensamento grego antigo que visualizava as estrelas e objetos celestes fixos sobre esferas girando em torno do observador humano.

A descrição moderna do universo e sua história é baseada principalmente na Teoria da Relatividade Geral (TRG) de Einstein que descreve a gravitação por meio da curvatura do espaço-tempo. Em escalas cósmicas a gravitação é a única força relevante e a TRG é a ferramenta apropriada para descrever o universo como um todo. Sob a restrição de algumas hipóteses básicas, tais como a de ser a matéria uniformemente distribuída pelo espaço em grande escala, a teoria indica que o universo não pode ser estático – ele deve estar se contraindo ou expandindo. A verificação observacional desta afirmação se deu com a descoberta de Edwin Hubble, em 1029, de que todas as galáxias, exceto aquelas que estão muito próximas da nossa, estão se afastando e a velocidade de afastamento é proporcional à sua distância. As medidas da velocidade de afastamento permitem calcular a quanto tempo toda a matéria e energia estavam condensadas em um volume muito pequeno, denominado de Big Bang ou Grande Explosão, o que ocorreu a aproximadamente 14 bilhões de anos. As hipóteses iniciais, a distribuição uniforme da matéria por exemplo, são verificadas com alto grau de precisão e o modelo ganhou o título de Modelo Padrão por explicar grande número de características hoje observadas.

Embora eficiente para explicar muitas coisas observadas ele não é completo. Não é possível, por exemplo, explicar porque a matéria, a energia e a temperatura estão distribuídas de forma tão uniforme pelo espaço. Não existe uma explicação natural do porque a explosão ocorreu em um determinado momento e nem de onde vem toda a energia necessária para provocar o surgimento de tudo o que vemos hoje. Além disto, entre outros problemas, não temos indicações do motivo de serem as constantes da física finamente ajustadas como são, o suficiente para permitir o surgimento da matéria como a conhecemos e a evolução hoje verificada.

Para descrever o conteúdo material deste universo é necessário lançar mão das teorias existentes da matéria, em particular a teoria quântica das partículas e campos. Estes campos serviram para explicar uma expansão muito rápida em um universo jovem (dentro do primeiro segundo após o Big Bang), no que consiste o modelo inflacionário. A rápida expansão tem o efeito de explicar a homogeneidade, além de estar em plena conformidade com a descrição de como pequenas ondulações ou desvios desta homogeneidade deram origem às grandes estruturas, galáxias e aglomerados. A energia escura foi adicionada mais tarde, sem uma motivação ou esclarecimento teórico mais profundo, mas necessária para explicar a aceleração hoje observada.

Apesar de que, por definição, a palavra Universo expresse um conceito que engloba todas as coisas que existem, em algumas situações surgem na física propostas de inclusão da existência de partes do Universo ou mesmo de outros Universos que poderiam não estão em conexão direta com a nossa realidade. Muitas destas propostas visam corrigir os defeitos do modelo cosmológico padrão. Observe, entretanto, que o conceito de multiversos é altamente especulativo e não deve ser tomado como parte integrante das teorias testadas e aceitas pela comunidade científica.

É importante compreender que a ciência lida com objetos que podem ser verificados por meio da experimentação ou da observação. Qualquer afirmação, esteja ela correta ou não, que não possa ser refutada ou confirmada permanece fora da fronteira do que se pode considerar científico. Desta forma a afirmação de que existem universos paralelos que não interferem em nada com o universo observável constitui uma proposta metafísica ou filosófica até que a sua verificação possa ser efetuada. Esta é a posição de muitos pesquisadores atuais, entre eles o físico inglês Paul Davies, atualmente professor na Universidade do Arizona, que afirmou: “Explicações radicais sobre o multiverso são uma reminiscência de discussões teológicas”.

(1) Como todo sinal ou interação entre partículas se dá, no máximo, com a velocidade finita da luz, dois objetos podem estar separados de tal forma que um não poderá jamais interagir com o outro, causando nele qualquer alteração. Estas são as chamadas separações tipo-espaço. Nada do que ocorre em uma região deste tipo pode ser percebido por nós.

No entanto, mesmo modelos do universo bastante conservadores podem incluir regiões desconectadas umas das outras. Até mesmo em um universo simples que satisfaz apenas à Relatividade Restrita, um mundo sem curvaturas nem dimensões extraordinárias, existem regiões causalmente desconectadas1. O cosmólogo sueco Max Tegmark, professor do Instituto de Tecnologia de Massachussets, preparou uma classificação de teorias que incluem universos com partes ou setores fora do alcance de nosso universo observável. Fazem parte deste grupo de hipóteses os modelos inflacionários onde pequenas regiões do espaço poderiam entrar em uma rápida expansão causada por campos quânticos locais formando novos universos como bolhas desconectadas do universo matriz. Estas bolhas possuem interesse teórico por permitirem a possibilidade da existência de muitos universos, cada um contendo valores diferentes para as diversas constantes cujos valores não podem ser ainda explicadas pela física. Entre muitos universos o nosso seria aquele onde as constantes são exatamente ajustadas para permitir surgimento da matéria e sua evolução em elementos de números atômicos crescentes, depois para o surgimento da vida e, finalmente, da consciência.

Outra possibilidade de multiversos é encontrada em modelos cíclicos, com a possibilidade de nosso universo interromper sua expansão e entrar em fase de contração, seguida de colapso e uma eventual nova explosão, em ciclos eternos. Este modelo esbarra na verificação recente de que o universo atual não está em processo de desaceleração e sim de expansão acelerada.

Um multiverso diferente mas igualmente intrigante é sugerido por uma curiosa interpretação da física quântica chamada interpretação de muitos mundos, uma das diversas tentativas de se encontrar a explicação por trás do mecanismo probabilístico no mundo quântico. Resumidamente este modelo sugere que os vários resultados possíveis de um experimento ocorrem em mundos diferentes. Um exemplo pode esclarecer a questão: o spin de um elétron é uma propriedade quântica que ocorre em dois estados, geralmente denominados para baixo e para cima (up e down). Antes de medir um spin não se sabe em que estado ele se encontra. Se uma medida é realizada verificamos que ele se encontra em um dos estados, digamos, com o spin para cima. Na interpretação de muitos mundos existe um outro universo onde o elétron está com o spin para baixo e a nossa medida teria provocado a escolha por um dos mundos possíveis.

Neil Turok

O conceito de multiverso ganhou um impulso importante na década de 2000 com a proposta de Paul Steinhardt, professor de astrofísica na Universidade de Princeton, e Neil Turok, professor de física matemática em Cambridge. Steinhardt e Turok buscavam explicar as características atuais observadas, principalmente a homogeneidade e a ação de energia e matéria escuras. Eles sugeriram um universo eterno e cíclico sem a necessidade da contração e colapso do universo atual.
O modelo matemático proposto é complexo mas fornece imagens interessantes. O universo seria composto por duas folhas paralelas e infinitas separadas por uma distância microscópica. Em uma das folhas está o espaço-tempo onde vivemos. A separação entre elas se dá em uma dimensão extra que não podemos ver nem testar experimentalmente com a tecnologia hoje existente. As folhas estão se expandindo em acordo com o modelo padrão. A temperatura ou densidade de matéria nunca seriam infinitas como sugere o modelo padrão. Em cada um dos ciclos o universo se inicia com uma explosão, com alta densidade de matéria-radiação e atravessa um período de expansão e resfriamento similares ao que ocorre no modelo padrão e que explica muitas características hoje observadas. Este modelo substitui a energia escura e o campo inflacionário por um único campo que oscila de forma a provocar a expansão e, mais tarde, sua desaceleração. Por isso ele requer menor quantidade de hipóteses, o que é visto como algo positivo pela mentalidade científica. Ele combina conceitos físicos bem estabelecidos com outros que são teoricamente bem aceitos mas ainda não verificados na observação, tais como a teoria das cordas e membranas, ambas destinadas a solucionar o problema da unificação entre o campo gravitacional e os demais campos.

(2) A decaimento da energia armazenada em um campo sob forma de matéria ou radiação é previsto na Relatividade Especial, e é dada pela equação E = mc2.

Quando o universo atinge aproximadamente a idade atual, 14 bilhões de anos após a explosão, a expansão é acelerada. Isto resolveria um dos principais problemas do modelo padrão onde um universo constituído apenas de matéria comum só poderia se desacelerar, uma vez que a gravitação é apenas atrativa e cada galáxia atrai todas as demais, contrariamente ao que hoje se observa. Trilhões de anos mais tarde o universo com o mesmo conteúdo de matéria-energia tem um volume muito grande e, por isto, baixa densidade e temperatura, e a expansão é interrompida. Neste ponto, segundo o modelo, um campo de energia que existe por todo o universo decai2 sob a forma de matéria e radiação, dando origem a um novo big-bang e um novo ciclo dai decorrente. As folhas interromperão sua expansão e começarão a se aproximar uma da outra com o colapso da quinta dimensão (que começará a se encolher). Elas entram em colisão de forma não completamente homogênea, uma vez que as oscilações quânticas provocam ondulações no espaço, e se repelirão, como se rebatidas ou quicadas, um efeito também quântico. O impacto da colisão transferirá sua energia para preencher mais uma vez o espaço com a matéria-energia quente e densa, em um novo Big Bang. A explosão provoca a retomada da expansão e um novo ciclo de resfriamento, aglutinação de estrelas e galáxias e formação de um novo universo similar ao atual.

O modelo Steinhardt e Turok

Não é fácil compreender o significado da expansão do espaço-tempo. Se for infinito ele não fica maior mas a separação entre pontos deste espaço é crescente, o que é percebido pelo afastamento das galáxias. As folhas ou membranas não são universos paralelos, como propõem outro grupo de teorias. Elas são partes de um mesmo universo, uma delas contendo a matéria comum que conhecemos e a outra com conteúdo que permanece, por enquanto, desconhecido. As duas folhas interagem apenas por meio da gravidade, objetos com massa em uma folha atraindo a matéria que se encontra na outra, algo que poderá vir a ser uma explicação para a presença da matéria escura, cujo efeito sobre a matéria comum é observado no universo atual e modifica o movimento dos objetos celestes.

Alguns pesquisadores consideram este modelo um avanço por ele fornecer respostas, ou pelo menos indicações de respostas, para problemas não resolvidos no modelo padrão. No panorama atual não há qualquer indicação sobre o que existia antes da Grande Explosão, sobre o que deu origem à matéria hoje observada, ou porque e como o campo primordial entrou em relaxamento cedendo sua energia para a formação da matéria. Além disto o modelo reproduz corretamente a descrição padrão no intervalo de tempo entre o Big Bang e o presente. Mas ainda não se pode concluir que suas demais previsões estejam corretas. Ele permanece como uma conjectura bastante especulativa, mas uma possibilidade que pode um dia ser comprovada ou levar à novos paradigmas do entendimento.

(3) Para uma diferenciação entre modelos, teorias especulativas e teorias comprovadas leia Teoria, Hipótese e Modelo em Física.

Historicamente os grandes avanços proporcionados pelo sucesso teórico de Einstein levaram muito estudiosos a investir tempo e esforço em propostas especulativas, muitas vezes distanciadas do observado e que permanecem muitos anos sem serem verificadas ou descartadas. Infelizmente a divulgação científica em nosso país é deficiente e notícias sobre modelos especulativos, como o de Turok, acabam por criar confusão para aqueles que buscam se informar sobre ciência moderna. A especulação é válida, interessante e pode ensinar muito sobre o avanço científico. No entanto, divulgadores e leitores devem manter em mente uma clara distinção entre as abordagens especulativas e o conteúdo científico verificado e aceito3.

Resta aos proponentes deste modelo aperfeiçoá-lo e extrair dele novos comportamentos que possam ser observados e que não são explicados por nenhuma das demais teorias candidatas. O fato de que existe um modelo matemático internamente consistente é uma boa motivação para que novos pesquisadores se dediquem a aprofundar o entendimento deste modelo, refazendo alguns aspectos e explorando suas consequências. No entanto a consistência lógica e matemática não é suficiente. Ela deve ser extendida para o domínio da verificação empírica antes que esta seja considerada uma teoria física aceita. E aos pesquisadores motivados e entusiasmados com seus próprios projetos de deve pedir que saibam diferenciar, para o grande público, a especulação da teoria aceita.

O modelo ou hipóteses aqui descritos são, até o momento, especulativos, tentativas de se explicar diversos problemas no modelo do Big Bang padrão.

Para uma diferenciação entre modelos, teorias especulativas e teorias comprovadas e aceitas leia: Teoria, Hipótese e Modelo em Física. Leia mais sobre cosmologia.

É importante compreender que a ciência lida com objetos que podem ser verificados por meio da experimentação ou da observação. Devemos acreditar na ciência?

Problemas com o Modelo Padrão

Deep Field: Imagem obtida pelo Hubble Space Telescope
(1) Homogeneidade é a propriedade do espaço de ser basicamente, pelo menos em média para grande escalas, independente do ponto onde se olha. As diversas partes do universo possuem a mesma densidade de matéria e radiação. Isotropia é a invariância destas propriedades com relação à direção. O universo é idêntico, para todos os lados que se olhe. Esta homogeneidade e isotropia não ocorrem em todas as escalas. No nível das galáxias, por exemplo, a matéria está concentrada nestas galáxias, que são muito mais densas no núcleo do que em suas bordas. Além disto as galáxias estão separadas entre si por grandes distâncias. Em níveis maiores elas tendem a se agrupar em aglomerados galáticos e, portanto, também não existe homogeneidade nesta escala. A homogeneidade aparece em escala muito maiores e isto pode ser verificado através de correlações entre distribuição e escala ou através de medições feitas sobre a radiação cósmica de fundo. Leia mais sobre o modelo padrão do Big Bang ou sobre a radiação cósmica de fundo.

O modelo do Big Bang é uma consequência da Teoria da Relatividade Geral, TRG, sob a hipótese de que o universo é homogêneo e isotrópico(1). Este modelo é bem sucedido em explicar características observadas, em especial o afastamento das galáxias descoberto por Edwin Hubble e a radiação de fundo na faixa de microondas. Vale enfatizar que, neste quadro, o universo não existiu sempre, tendo passado por um momento específico a aproximadamente 14 bilhões de anos. A pergunta sobre o que existia antes do Big Bang não possui qualquer significado, da mesma forma que uma pessoa postada sobre o pólo norte não pode prosseguir caminhando em direção ao norte.

No entanto ela introduz um número de problemas ainda não resolvidos, entre eles o motivo para que o universo esteja tão perto de sua densidade crítica (ou porque ele é hoje um universo plano), de como ele alcançou a homogeneidade hoje verificada embora não exista a possibilidade de contato entre regiões causalmente separadas, ou mesmo sobre o que teria motivado a própria explosão inicial. Existe razoável consenso entre os pesquisadores da área de que a TRG, que é a estrutura matemática por trás da descrição do espaço-tempo, não é uma boa teoria para a descrição dos estados que ocorreram logo após o big bang quando matéria e energia se encontravam em estado de alta densidade e a temperatura era muito elevada. É muito provável que uma descrição quântica da gravitação seja necessária para uma descrição apropriada deste período. Esta descrição, pelo menos por enquanto, não existe.

A TRG explica a gravitação em termos de modificações na curvatura do espaço-tempo causadas pela presença de matéria-energia. A teoria é elegante, matematicamente consistente e verificada experimentalmente em todos os tipos de experimentos e observações possíveis até o presente.

(2) Na natureza existem apenas quatro campos identificados: o campo gravitacional, campo eletromagnético, campo nuclear fraco e campo nuclear forte. É possível hoje mostrar que, em altas temperaturas (portanto altas energias), tais como as encontradas logo após o big bang, estes campos, exceto o gravitacional, se tornam unificados e a teoria quântica de campo é o embasamento teórico para esta unificação. A teoria quântica de campo não faz nenhum uso de alterações na geometria do espaço como a TRG mas explica as interações entre partículas subatômicas por meio de trocas de partículas virtuais.

(3) Em breve publicaremos neste site um artigo exclusivamente sobre a constante cosmológica e sua história.

Por outro lado houve também um grande avanço na explicação dos demais campos de força2. Na década de 1980 foi proposto o modelo inflacionário que se utiliza de campos quânticos para promover um crescimento muito rápido no universo inicial. Considera-se hoje que a inflação é a responsável pela explosão e explica algumas características hoje observadas, tais como porque o universo se encontra tão próximo da densidade crítica e porque é tão homogêneo. Além disto as pequenas distorções ou inomogeneidades observadas na radiação cósmica de fundo são compatíveis, dentro do panorama da inflação, com a formação de galáxias e grandes estruturas como aglomerados galáticos.

Independente do sucesso ou não deste modelo é necessário incluir a presença de campos quânticos e a provável existência de uma constante cosmológica, tal como proposta por Einstein ou alguma alternativa na forma de termos cosmológicos variáveis com o tempo. De fato tornou-se um problema adicional a explicação de como o universo sai da fase inflacionária e existem evidências observacionais de que ainda existe, mesmo no presente, uma pressão para a expansão, o que poderia ser explicado pela presença de uma constante cosmológica3.

Representação artística de um buraco negro: uma região de altíssima curvatura no espaço-tempo, de onde nem a luz consegue escapar.

O fato de que a TRG prevê seu próprio fracasso em algumas regiões do espaço tempo, dentro das chamadas singularidades representadas por buracos negros ou pelo própio Big Bang, é suficiente para que se investigue uma descrição alternativa, provavelmente uma extensão, no mesmo sentido em que a teoria da relatividade especial é uma extensão da mecânica clássica e a relatividade geral é uma extensão da especial. Além disto a existência de teorias reconhecidamente eficientes para a explicação da natureza dentro de seus respectivos domínios mas inconsistentes entre si em um domínio comum, tal como ocorre com a teoria quântica de campos e a teoria da gravitação, impulsiona a busca de uma nova teoria. Como se acredita que esta teoria deve incorporar características da física quântica ela tem recebido o nome de Gravitação Quântica, GQ.

Perturbações em escalas de 10-33 cm nos campos e na densidade de partículas faz com que o espaço-tempo tenha uma natureza de “espuma” nesta escala.

Um raciocínio simples aponta para a necessidade de uma descrição especial para a gravitação ou para o espaço tempo em níveis microscópicos. Suponha que estamos analisando uma região vazia do espaço-tempo onde nenhuma matéria ou energia tenham sido detectadas. Temos neste caso um espaço plano, matematicamente denominado espaço-tempo de Minkovsky. Suponha ainda que passamos a analisar este espaço-tempo com microscópios poderosos para compreender o que ocontece com o espaço em escalas muito reduzidas. De acordo com a teoria quântica nenhum dos campos físicos existentes pode ser relaxado ou enfraquecido até um nível completamente nulo. Como todos os osciladores, mecânicos ou não, o nível mínimo de energia não é nulo ou, dito de outra forma, o estado fundamental de qualquer oscilador encontra-se acima do zero. Estes campos carregam energia e portanto devem provocar a curvatura do espaço. Alternativamente se pode imaginar outro quadro: microscopicamente a teoria quântica permite a criação de partículas virtuais acompanhadas de suas antipartículas, desde que elas surjam e se aniquilem rapidamente de modo a não contrariar o princípio da incerteza. Estas partículas carregam massa e energia e portanto curvam o espaço-tempo. Pode-se portanto esperar que o espaço-tempo tenha uma estrura ultra granulada, como se fosse uma espuma de bolhas, em um nível muito pequeno. Esta espuma deve afetar os fenômenos, pelo menos em níveis microscópicos ou de altas energias.

(4) Com o fim da guerra fria ocorreu uma drástica uma diminuição no nível de investimento em pesquisa básica no mundo todo. Os aceleradores estão se tornando cada vez mais caros, só se tornando possível em empreendimentos cooperativos envolvendo diversas nações.

Existem diversas formulações candidatas concorrentes ao título de Gravitação Quântica, GQ. Entre elas está teoria das cordas em suas diversas modalidades, loops (ou laços) ou teorias quânticas não-perturbativas. Além de sua importância em cosmologia se espera dai uma explicação para muitas questões não respondidas, tais como um tratamento mais completo de singularidades, a compreensão de aspectos quânticos dos buracos negros e, possivelmente, sobre a natureza da energia escura. Toda teoria física deve fornecer previsões que podem ser verificadas sob o crivo da experimentação e observação, e estas não são exceções. No entanto as predições testáveis destas teorias ocorrem em regime de altíssimas energias que ainda não podem ser obtidas nos aceleradores de partículas atuais. Por isto existe uma corrida4 para a construção de aceleradores maiores e melhores e eventualmente será possível discernir quais destas teorias, se houver alguma, estão corretas ou não. Outra possibilidade de teste consiste na observação astrofísica de buracos negros, de eventos cósmicos de altas energias e da própria cosmologia.

Além de passar por estes testes uma boa candidata à teoria da GQ deve se resumir à Relatividade Geral no domínio de baixas energias, assim como objetos em velocidades relativísticos passam a ser muito bem descritos quando sua velocidade baixa até um nível muito inferior à velocidade da luz.

Teoria das Cordas, Universos sem um Início

(5) A “Teoria” das cordas não é de fato uma teoria, mas um modelo proposto ou uma hipótese. Para uma diferenciação entre modelos, teorias especulativas e teorias comprovadas e aceitas leia: Teoria, Hipótese e Modelo em Física.

Uma das “teorias”5 tentativas promissoras e muito interessantes para a descrição de uma gravitação quântica, reconciliando a mecânica quântica e a gravitação, tal como descrita pela teoria da relatividade geral, é teoria das cordas ou string theory. A principal motivação para se considerar uma teoria deste tipo é a procura pela chamada Teoria de Tudo (Theory of Everything – TOE), uma forma matemática unificada de descrição da matéria e dos quato campo conhecidos. A teoria das cordas propõe que partículas elemtares, tais como eletrons e quarks, não são objetos pontuais (adimensionais), como são tratados na formulação clássica e mesmo na mecânica quântica padrão, mas sim pequenas cordas oscilantes e vibratórias, objetos unidimensionais. Os primeiros modelos de cordas incluiam apenas bósons, partículas de spin inteiro tais como o fóton e outras partículas que servem de mediadoras entre os campos de força. Mais tarde foram propostos modelos como os de Supercordas onde se pretendia uma supersimetria envolvendo bósons e férmions (elétrons, por exemplo). Curiosamente o tratamento matemático destes modelos envolve a existência de dimensões extras além das quatro dimensões do espaço-tempo usuais. Como estas dimensões extras não são observadas se desenvolveu um mecanismo de compactação destas dimensões que adquirem altas curvaturas e se tornam algo como pequenas bolas anexadas a cada ponto do espaço físico.

A teoria das cordas ou strings parte do pressuposto de que as partículas elementares não são pontos mas sim pequenas cordas.
Imagem modificada à partir de imagem na Wikimedia Commons, sob licensa Creative Commons.

Na década de 1990, em uma tentativa de apresentar um modelo que engloba os diferentes modelos de supercordas existentes, foi proposta a Teoria-M, (M de membrana) onde as cordas são vistas como cortes de membranas vibratórias que existem em 11 dimensões. Alguns físicos consideram que a teoria das cordas e seus aperfeiçoamentos são um passo importante na compreensão da teoria unificada, enquanto outros a criticam por não fornecerem previsões quantitativas suficientes para que possam ser comprovadas ou descartadas pela experimentação.

Apesar de parecer excessivamente especulativo o conceito de cordas carrega consigo alguns aspectos interessantes. Para entender isto podemos considerar um mero eletron como partícula pontual. Na descrição usual de partícula seu campo gravitacional e elétrico ambos são proporcionais a 1/r2 sendo portanto singulares em r=0 (assumem valores que tendem a infinito quando r tende a zero). Em outras palavras tanto o campo gravitacional quanto o elétrico tendem a infinito nas proximidades do eletron que carrega, portanto, infinita energia! Esta dificuldade é removida se sua massa e carga (e outras propriedades) estão distribuídas ao longo de uma corda ou membrana.

A falta de comprovação, no entanto, não impede que muitos cosmólogos apliquem os conceitos das cordas em seus modelos cosmológicos, obtendo alguns resultados interessantes apesar de altamente especulativos. Um exemplo disto esta descrito no artigo Modelo de Steinhardt e Turok.



Desvio para o vermelho e a lei de Hubble

O desvio para o vermelho (redshift) é um fenômeno ótico ocasionado pelo afastamento da fonte de luz e um caso particular do conhecido efeito Doppler. Também pode ocorrer desvios para o vermelho devido a efeitos gravitacionais, um caso que será tratado em outra parte.

Fonte vibratória em movimento

Christian Doppler foi o primeiro a dar uma explicação física para o fenômeno e também a prever que ele ocorre em qualquer tipo de onda, mecânica ou eletromagnética. Foi ele também quem sugeriu que o efeito pudesse ser usado para medir velocidades de objetos celestes.

Para compreender o efeito vamos primeiro nos lembrar do que ocorre quando observamos um carro de corrida se aproximando em alta velocidade. O ronco do motor é mais agudo na aproximação. Depois que o carro passa por nós e se afasta o ronco se torna mais grave. Na aproximação um número maior de frentes de ondas atinge nossos ouvidos por unidade de tempo e interpretamos isto como aumento da frequência (mais agudo). No afastamento um número menor de frente de ondas nos atinge no mesmo tempo, o que interpretamos como diminuição da frequência (mais grave).

A luz vermelha tem a seguinte frequência e comprimento de onda:
4 × 1014 HZ — 7,5 × 10-7m
A luz violeta, no outro extremo do espectro:
7,6 × 1014 HZ — 3,9 × 10-7m

Efeito idêntico ocorre com a luz, que é uma forma de radiação eletromagnética e vai desde o vermelho até o violeta. Um objeto com cor conhecida e que se afasta em alta velocidade tem a sua cor deslocada em direção ao vermelho e medida deste desvio pode ser usada para determinar sua velocidade. Da mesma forma se o objeto se aproxima sua cor é desviada em direção ao azul, ou seja, tem a sua frequência aumentada.

Para medir a velocidade de uma estrela ou galáxia distante é necessário conhecer a cor de alguma radiação emitida por ela e isto é possível devido à mecânica quântica. Os gases contidos em objetos quentes emitem luz em faixas ou cores muito bem definidas que dependem do material de que são compostos. Estes espectros de emissão funcionam como assinaturas específicas de cada elemento, átomo ou molécula e servem para identificá-los na Terra ou nas estrelas. Desta forma foi possível identificar o elemento químico hélio no Sol em 1868, antes que pudesse ser detectado na Terra, uma vez que ele é abundante nas estrelas e raro em nosso planeta.

Linhas de emissão (ou absorção) são deslocadas no espectro
Ainda não se sabia, naquela época, que as nebulosas eram objetos fora de nossa galáxia.

O astrônomo americano Vesto Slipher, em 1912, estudando os espectros observados de nebulosas espiraladas descobriu que as linhas espectrais de elementos conhecidos estavam presentes nas nebulosas mas deslocados de suas posições padrões. Estes deslocamentos foram interpretados como devidos ao afastamentos dos objetos observados.

Desvio para o vermelho provocado pelo afastamento

Mais tarde, em torno de 1919, Edwin Hubble iniciou um projeto de medida de distâncias de nebulosas espiraladas e estrelas conhecidas como cefeidas, usando o telescópio de Hooker de 2,5 m de diâmetro, considerado grande para aquela época. Ele provou que as nebulosas, incluindo Andrômeda, estavam longe demais para fazer parte de nossa galáxia e que eram, de fato, grandes aglomerados de estrelas como a nossa Via Láctea, ou seja, são galáxias como a nossa! Em seguida, combinando o conhecimento das distâncias destas galáxias com o seu desvio para o vermelho Hubble e Humason mostraram que existe uma proporcionalidade: quanto mais distante um objeto celeste mais rápido ele se afasta de nós. Apenas galáxias no nosso grupo local, entre elas a própria Andrômeda, estão se aproximando. Esta observação é compatível com a descoberta teórica feita pelos físicos e matemáticos que exploravam as consequências da Teoria da Relatividade Geral de Einstein e com o modelo cosmológico decorrente, bem como com a observação feita por Penzias e Wilson da radiação cósmica de fundo, na faixa das microondas.

A lei de Hubble é expressa pela equação v = H0D onde H0 é uma constante de proporcionalidade denominada constante de Hubble, D é a distância da galáxia considerada e v é a sua velocidade. A constante de Hubble é frequentemente dada em unidades de (km/s)/Mpc, (quilômetros por segundo) por megaparsec sendo que 1 parsec é, aproximadamente, 31×1012 km ou 3.26 anos-luz.

Uma medida recente da constante de Hubble, realizada pelo Telescópio Espacial Hubble em 2009, fornece o valor de H0 = 74.2 ± 3.6 (km/s)/Mpc. A medida desta constante, juntamente com o modelo padrão da cosmologia, nos leva à conclusão de que o universo tem aproximadamente 14 bilhões de anos!


Por que o céu noturno é Escuro?

🔻Final do artigo

Suponha que uma pessoa é curiosa e tem uma mente investigativa mas não dispõe de recursos tecnológicos, tais como grandes telescópios, ou teóricos, como a Teoria da Relatividade Geral de Einstein. Existe alguma maneira pela qual ele perceba que o universo não é simultaneamente infinito e estático?

Este investigador sem recursos sai à noite para observar as estrelas e percebe, como todos sabemos, que o céu éescuro à noite, exceto pelo brilho pontual das estrelas, dos planetas e galáxias. Sabemos ainda, embora o observador sem recursosnão o possa notar, que existe também uma radiação abrangente e uniformemente espalhada pelo espaço, aradiação cósmica de fundo que não é visível por estar na faixa de frequência das microondas. No geral o céu noturno é escuro. Nosso pensador, no entanto, supõe que o universo é infinito e estático e que existe um número enorme de estrelas espalhadas de modo aproximadamente uniforme pelo espaço. Em qualquer direção em que ele olhar para o céu haverá uma estrela uma vez que o universo é infinito (ou muito grande).

Figura 1: O Paradoxo de Olber

Figura 1A área da casca esférica (a superfície da esfera representada na figura pelo círculo verde) cresce com o quadrado da distância, enquanto o brilho das estrelas decai de modo inversamente proporcional ao quadrado desta distância. Como se partiu da suposição de que a densidade é a mesma, na média, então o número de estrelas é maior na medida em que se afasta do observador. Este número maior compensa o efeito da queda de luminosidade devido à distância.

É claro que as estrelas mais distantes parecerão ser menos brilhantes mas, por outro lado, haverá um número maior delas para camadas mais distantes, como está ilustrado na figura 1. A intensidade do brilho diminui com o inverso da distância ao quadrado, mas o número de estrelas aumenta proporcionamente com o quadrado da distância de forma que os efeitos se cancelam e o céu noturno deveria ser brilhante, pelo menos com brilho similar ao do disco solar, visto aqui da Terra.

Este é o chamado paradoxo de Olber e foi, na verdade, percebido muito antes de Olber. O astrônomo Edward Harrison1 descreve que Thomas Digges, matemático e astrônomo inglês, percebeu ainda no século XVI problema do brilho do céu noturno. Digges era um defensor do sistema Copernicano e foi o primeiro asugerir que, além da esfera das “estrelas fixas” havia um espaço infinito e “repleto de estrelas”. Também Kepler descreveu o problema em 1610, embora uma forma mais moderna de compreensãodo mesmo só tenha surgido no século XVIII com o trabalho de Halley e Cheseaux. O astrônomo alemão Heinrich Olber voltou a levantar a questão em 1823 e a tornou mais conhecida, sem ter alcançado uma compreensãode sua solução. Lord Kelvin, segundo Harrison, foi o primeiro a apresentar uma tentativa de solução. Curiosamente o escritor Edgar Allan Poe2, antes de Kelvin, fez uma descrição simples de sua solução.

(1) 1987. Harrison, Edward: Darkness at Night: A Riddle of the Universe, Harvard University Press. ISBN 9780674192706.

2) A citação de Poe, aqui em livre tradução, é uma antecipação da explicação oferecida por Kelvin: “Se houvesse uma sucessão infinita de estrelas o fundo do céu nos pareceria brilhar com luminosidade uniforme, como a exibida na Galáxia – uma vez que não existiria nenhuma direção para a qual se olhasse sem que uma estrela lá estivesse. Portanto a única maneira de compreendermos esta situação, de acomodarmos a noção de que os telescópios podem mostrar grandes vazios em diversas direções, é através da suposição de que as distâncias cósmicas são tão gigantescas que nenhum raio de luz das estrelas distantes foi até agora capaz de nos alcançar.”

Esta não é, infelizmente, uma explicação correta para o suposto paradoxo.

(3) A radiação cósmica de fundo é bastante uniforme mas não completamente! Pequenos desvios na homogeneidade ou “caroços” em regiões um pouco mais quentes ou mais frias são exatamente o que se deveria esperar à partir das teorias de geração das estruturas, tais como galáxias e grupos de galáxias. Se a matéria-energia primordial fosse completamente homogênea nenhuma estrutura seria formada.

Algumas tentativas de solução foram apresentadas:
  1. o espaço é permeado por grande quantida de poeira que impede a passagem da luz,
  2. existe apenas um número finito de estrelas,
  3. a distribuição das estrelas não é uniforme,
  4. o universo é muito jovem e a luz das estrelas distantes ainda não nos alcançou,
  5. o universo está se expandindo.

A primeira tentiva consiste em supor que existe matéria espalhada pelo espaço e que esta poderia impedir a passagem da luz das estrelas distantes. No entanto, ao absorver luminosidade (que é uma forma de radiação e transporta energia) a poeira se aqueceria a passaria a emitir luz por conta própria. Por outro lado uma quantidade muito grande de poeira obscureceria nosso Sol e poderia ser detectada da Terra, algo que não acontece.

Quanto a segunda resposta, é possível (mas não muito provável) com base no que se conhece hoje que o universo seja finito e exista um número finito de estrelas. No entanto o número de estrelas e outros objetos celestes já conhecidos e catalogados já é suficientemente grande para iluminar o céu noturno.

A discussão da terceira tentativa de explicação do problema é um pouco mais complexa e está discutida com mais detalhe no artigo principal sobre cosmologia. Em resumo, apesar de exibir claramente desvio de uniformidade em escalas menores, como pode ser observado nos sistemas planetários, nas galáxias e mesmo nos agrupamentos galáticos, o universo aparenta ser aproximadamente homogêneo em escalas muito grandes, bem maiores que a de agrupamentos de algumas poucas galáxias! A homogeneidade da radiação cósmica de fundo é outro bom argumento de que o universo é homogêneo em grande escala3.

A quarta premissa é um pouco mais complexa e exige um conhecimento matemático um pouco mais detalhado para sua compreensão. Apenas para não deixar de todo a questão sem tratamento, adiantemos algum conteúdo para análise e apreciação! O Big Bang não representa apenas a origem do conteúdo material do cosmos, mas também do espaço e do tempo. De acordo com a Teoria da Relatividade o próprio espaço se expande e o tempo teve um início. Não existia nada antes do início, nem matéria, nem o espaço e nem o próprio tempo. A informação mais antiga que temos da explosão é representada pela radição cósmica de fundo e ela está fria demais para iluminar o céu noturno!

O Universo Observável é composto de tudo aquilo que emitiu radiação e esta radição nos alcança no presente. Como a velocidade da luz é finita é possível que existam partes do universo não observadas mas isto nos remete a um terreno pouco físico, uma vez que estas regiões não nos afetam de forma alguma. Além disto seria surpeendente se regiões distantes de nossa observação, se existirem, fossem muito diferentesda região observado, que apresenta grande grau de uniformidade e homegeneidade. Além disto a homogeneidade da radição de fundo é uma indicação de que houve tempo suficiente para que as diversas regiões do espaço interagissem entre si atingindo a homogeneidade.


A última das possibilidades é geralmente apresentada como a melhor solução para o paradoxo (que portanto não é um verdadeiro paradoxo!). Com a expansão universal as estrelas, galáxias e tudo o mais que emite luz estão em velocidades que são mais altas para objetos mais distantes e o efeito do desvio para o vermelho enfraquece o brilho desta radiação.

Desta forma, uma pessoa desprovida de instrumentos poderia ter percebido, antes das medidas do deslocamento feitas por Hubble, que o universo não pode ser simultaneamente estático e infinito.

🔺Início do artigo


Cosmologia, a Estrutura do Universo

O Céu pode cair sobre nossas cabeças?

Uderzo e Goscinny criaram a história em quadrinhos de Asterix e a famosa tribo gaulesa que teria vivido aproximadamente 50 anos antes da Era Cristã. Quase toda a Gália havia sido ocupada pelos romanos, exceto por uma pequena aldeia povoada por bravos guerreiros gauleses que, isolados, resistiam ao invasor. Com a ajuda do druida da aldeia, que lhes fornecia uma poção de invencibilidade, eles levavam uma vida despreocupada e divertida e nada temiam … exceto que o céu lhes caísse sobre as cabeças.
 

É claro que todos os que leram aquelas histórias se divertiram com esta questão. Mas isto não elimina a necessidade da pergunta: pode o céu cair sobre as nossas cabeças?
(1) Exploraremos com maior cuidado o significado desta última formulação da pergunta!
(2) A palavra cosmologia vem do grego κοσμολογία, kosmos, “universo” e logia, “estudo”) e representa uma tentativa de apreender racionalmente o Universo em sua totalidade, a distribuição e estrutura de seu conteúdo, o mecanismo de sua formação e seu desenvolvimento futuro.

Talvez a pergunta possa se revestir de maior credibilidade se a colocarmos sob outra forma: “o céu, o firmamento, as estrelas e o próprio universo são eternos?” Ou ainda, sob forma mais técnica: “Existem soluções estáveis para o movimento dos objetos celestes que hoje conhecemos?”(1)

As pessoas, em todos os tempos, sempre se perguntaram sobre a origem do mundo, sobre como ele está hoje estruturado e como será o seu final, caso venha a existir um final. Esta é a questão básica da cosmologia(2). A maior parte deste esforço foi feito sob a forma de mitologia e filosofia, cada uma destas com seu próprio valor e capacidade de abrangência. Mas apenas recentemente foi possível obter um tratamento científico para estas dúvidas e muitas respostas interessantes são daí decorrentes.

A maior parte do que hoje sabemos sobre cosmologia é uma aplicação direta da Teoria da Relatividade Geral de Einstein, que passaremos a denominar simplesmente por TRG. Logo que Einstein completou a sua teoria ele percebeu que ela seria uma ferramenta importante na compreensão do universo. O motivo não é difícil de se entender. Hoje conhecemos apenas quatro tipos de forças ou interações físicas: as forças nucleares fraca e forte, eletromagnética e gravitacional. As forças nucleares são poderosas mas possuem campo de atração muito restrito. Elas decaem rapidamente quando se afasta das cargas e só são importantes nas proximidades no núcleo atômico. Os campos eletromagnético e gravitacional têm o mesmo tipo de decaimento com a distância mas as cargas elétricas positivas e negativas existentes em um planeta, digamos, se cancelam. A carga gravitacional, que é composta por toda e qualquer partícula com massa não nula, é única. Nas escalas do afastamento entre planetas, entre as estrelas e galáxias a gravitação é o único campo efetivo.

Quando Einstein e outros cientistas aplicaram a nova TRG ao estudo do Universo eles logo perceberam que não havia uma solução estática o que causou uma certa comoção uma vez que, com base no pensamento ocidental vigente na época, se esperava que o universo fosse eterno e imutável. Buscando tornar a solução de seu universo estática Einstein acrescentou, de forma bastante arbitrária, um termo extra às equações que descreviam a gravitação. Este termo foi denominado Constante Cosmológica e, apesar de não resolver o problema a que se destinava, teve papel importante e ainda não completamente esclarecido no estudo da cosmologia. Mesmo com a constante cosmológica o universo seria instável de forma que ele abandonou este termo dizendo que aquele havia sido o maior erro de sua vida.

Façamos uma pequena digressão para compreender melhor o que são soluções estáticas ou não estáticas para o universo. Para isto considere, por um momento, que a teoria de Newton é completamente correta (como se acreditava até a apresentação do trabalho de Einstein). Segundo a teoria newtoniana dois corpos materiais se atraem na razão direta de suas massas e inversa do quadrado da distância entre eles. Esta teoria é suficiente para explicar a maior parte das órbitas planetárias, dos cometas e dos satélites. Ela só deixa de ser válida em situações onde a atração da gravidade é muito alta, o que ocorre nas proximidades de corpos gigantes, quando passa a ser necessário utilizar a TRG. Como todos os objetos massivos se atraem, no caso de um universo finito, todos os planetas, estrelas e galáxias cairiam uns sobre os outros formando um grande aglomerado de massa mais ou menos no centro deste universo. Pode-se também imaginar um universo infinito, de forma que cada bloco de matéria tivesse a mesma quantidade de matéria por todos lados de modo a atração fique equilibrada. Neste caso, para ser estático ele teria que ser completamente homogêneo, com igual densidade em todas as partes. Qualquer pequeno aglomerado mais denso de matéria faria que que se iniciasse um processo de aglutinação. Sabemos, é claro, que o universo não é completamente homogêneo. Se assim fosse não existiram sistemas planetários, galáxias e aglomerados de galáxias como os que são hoje observados.

Concluimos portanto que, mesmo no panorama newtoniano, não é possível que o universo seja estático. Um astrônomo ou físico, de posse apenas da física clássica newtoniana, poderia ter anunciado ao mundo muito antes de Einstein que o universo deve ser dinâmico, que não pode estar em um estado de constância e permanência!

Resta uma possibilidade: o universo está de fato caindo em direção à algum ponto ou se expandindo! E esta dúvida deve ser esclarecida por meio da observação astronômica.

Edwin Hubble

A resposta foi encontrada por Edwin Hubble, entre outros astrônomos. Em torno do ano de 1919 foi concluída a construção de um grande telescópio (para os padrões da época – ele tinha 2.5m de abertura!). Até então se acreditava que o universo era constituído apenas pela Via Láctea. Hubble identificou objeto celestes, antes conhecidos como nebulosas, como sendo estruturas gigantescas de estrelas muito além dos limites da Via Láctea. De fato elas consistiam em outras galáxias análogas à nossa, e existiam em abundância. Hubble observou, por meio do chamado efeito de “desvio para o vermelho” que as galáxias estavam, em sua maioria, se afastando da nossa e que, quanto mais distantes estão, mais rápido é este afastamento. Esta observação leva a diversas conclusões interessantes: no passado toda esta massa de objetos celestes estava muito mais próxima; o universo teve um início, o momento em que a massa universal partiu em sua viagem de expansão; a temperatura do universo era muito maior no passado; e, finalmente, algum efeito produziu a expansão. é o que chamamos hoje de Big Bang ou a Grande Explosão e, com esta verificação, abandonamos a tentativa ou a esperança de encontrar uma descrição do universo consistente com um universo estático e imutável.

Voltando para a teoria de Einstein, para chegar ao chamado Modelo Padrão da Cosmologia foi necessário fazer algumas hipóteses (que, é claro, devem ser verificadas pela observação). As equações de Einstein descrevem o campo gravitacional. Diferentemente das teorias anteriores desenvolvidas na física, onde o espaço em que agem as forças e ocorrem os movimentos é tomado à priori como sendo conhecido, elas tem como solução o próprio espaço-tempo. Dito de uma forma simples e resumida a TRG associa a presença da matéria à geometria do espaço-tempo. Matéria deforma o espaço-tempo que, por sua vez, altera a trajetória das partículas que nele viajam. Estas equações são tecnicamente conhecidas como equações diferenciais, como são praticamente todas as demais equações da física, mas, diferente das equações de Newton, são não-lineares e, em geral, de difícil solução.

O primeiro passo importante para o estabelecimento de um modelo universal realista foi proposto pelos esforços conjuntos dos físicos e matemáticos Friedmann, Lemaître, Robertson e Walker (que passaremos a chamar de FLRW, para simplificar). Estes pensadores partiram da suposição inicial de que o conteúdo de massa do universo é homogêneo (ou, pelo menos aproximadamente homogêneo), isotrópico e simplesmente conexo. A homogeneidade significa que regiões distintas do universo possuem a mesma densidade, a isotropia significa que o universo tem aproximadamente as mesmas propriedades independente da direção em que se olhe. Ele é conexo se é possível, em princípio, viajar de uma região qualquer para outra qualquer sem abandonar o universo.

A homogeneidade, é claro, não é observada em qualquer escala. O sistema solar, por exemplo, é altamente inomogêneo, consistindo de um grande aglomerado de massa em seu centro, o Sol, e os planetas muito menos massivos, que orbitam a estrela central. Se observamos este sistema de um ponto cada vez mais afastado veremos que muitas outras estrelas existem na nossa vizinhança, formando a galáxia Via Láctea, que por sua vez consiste em um grande aglomerado central de corpos celestes, circundado por braços espiralados. é interessante lembrar que nosso Sol se encontra na ponta de um destes braços. Afastando-nos ainda mais perceberemos que nossa galáxia faz parte de um aglomerado de galáxias e os aglomerados se dispõem em forma de gigantescos filamentos e paredes cósmicas. A homogeneidade só é obtida, aproximadamente, em escalas ainda maiores.

A suposição de FLRW permite uma grande simplificação das equações de Einstein que passam, agora, a exibir soluções razoavelmente simples e tratáveis e que formam a base do entendimento moderno da disposição e evolução do universo. As equações que descrevem esta dinâmica, no entanto, dependem fortemente de um parâmetro que não pode ser fornecido pela própria teoria, mas deve ser medido ou observado. Este parâmetro é a densidade, a quantidade média de massa contida em cada unidade de volume. Quanto maior a densidade maior será a força de atração universal entre todos os componentes do universo. Sabemos, pela observação, que estamos em expansão. Se a densidade for acima de uma certa densidade crítica a atração será suficiente para frear a expansão e o universo se contrairá após atingir uma expansão máxima, colapsando sobre si mesmo e provavelmente caindo em direção a um gigantesco buraco negro. Se a densidade for menor que a crítica ele continuará para sempre em sua expansão pois a atração não será suficiente para fazê-lo recontrair-se. O caso intermediário, de densidade crítica, é representado por uma expansão eterna com paralização no infinito.

Uma analogia útil:

Velocidade de escape

Podemos aqui tentar uma analogia com um caso bem mais simples e concreto. Você está em um planeta qualquer e, quando olha para o céu, vê uma pedra que está subindo. Naturalmente você conclui que ela tinha velocidade mais alta no passado, já que ela está sendo atraída (e, portanto, freada) pela gravidade do planeta. Se a massa do planeta for muito grande a atração será suficiente para frear a pedra que voltará a cair no chão. Se a massa do planeta for pequena a pedra pode estar com velocidade superior à velocidade mínima para que esteja presa ao planeta e não tornará a cair. Neste caso ela voa direto para o espaço e abandona seu planeta natal. No caso intermediário é o, a chamada situação crítica, a pedra voa para fora da órbita do planeta com velocidade exatamente igual à velocidade de escape.

Alternativamente, se atirarmos uma pedra do alto de uma montanha, como ilustrado na figura ao lado, ela cairá perto da montanha se a velocidade for muito baixa ou a massa do planeta for alta (caso A) ou sairá da órbita do planeta se a velocidade for alta ou a massa do planeta for pequena (caso B). O caso intermediário ocorre quando a pedra entra em órbita, percorrendo uma trajetória circular ou elíptica (ilustrado no caso C).

Nota: Um gás que se expande rapidamente, sem trocar calor com o ambiente, se esfria, enquanto um gás que se contrai nas mesmas condições se esquenta.

Assim como acontece no caso da pedra, citado como exemplo, este modelo de mundo fornece uma descrição do que ocorreu e do que poderá ocorrer com o universo. Como quase todas as galáxias estão se afastando podemos concluir que elas estiveram muito mais próximas no passado. Com a mesma energia disponível então, o universo teve origem em uma grande explosão muito quente. As teorias relativas à materia (que envolvem principalmente a mecânica quântica e a teoria quântica de campos) prevêm que as partículas elementares foram geradas e espalhadas pelo espaço com altísimas energia.

Penzias e Wilson e a detecção da radiação cósmica de fundo.

Enquanto isto outras evidências de que houve uma Grande Explosão eram verificadas. Em 1965 dois físicos americanos, Penzias e Wilson estavam trabalhando em uma grande antena muito sensível, com o formato de um chifre, usada para pesquisa em telecomunicações. Eles então perceberam que havia um ruído na recepção da antena, ruído que, por mais que se esforçassem, não puderam eliminar. Eles procuraram apontar a antena em diversas direções, descobrindo que a radiação desconhecida não provinha da Terra, nem do Sol e nem mesmo de nossa galáxia, mas estava espalhada uniformemente por todo o espaço. Então eles ouviram falar das descobertas teóricas de que o universo poderia ter sido originado em um estado de alta densidade e temperatura e compreenderam que ela era remanescente da grande explosão. Esta radiação foi denominada Radiação de Microondas Cósmica de Fundo e hoje ela é conhecida com alto nível de precisão. A uniformidade da radição pelo espaço é uma testemunha da homogeneidade do próprio universo, principalmente na época em que a radiação foi gerada e sua distribuição (frequência versus intensidade) determina uma temperatura de 3 K (3 graus Kelvin, equivalente a aproximadamente -270 oC ). Ela, no entanto, possui ondulações ou desvios da uniformidade, em perfeita conformidade com as teorias que descrevem a formação das estruturas cósmicas, tais como galáxias e aglomerados, hoje existentes.

Esta e outras verificações observacionais favoreceram a teoria do Big Bang em desfavor de teorias alternativas, tais como a Teoria do Universo Constante (Steady State Universe) que propunha ser o universo sempre imutável em densidade e que a expansão, que não pode ser negada, era compensada por uma constante criação de nova matéria no meio intergalático. A idade do universo no modelo padrão pode ser calculada com auxílio das equações de Einstein e a partir das medidas da constante de Hubble: o universo tem de 13.5 a 14 bilhões de anos. Medidas atuais indicam uma idade de aproximadamente 13.73 bilhões, com uma incerteza de 120 milhões de anos.

História Resumida do Universo

A história do universo decorrente desta teoria pode ser resumida da seguinte forma:

A Era de Planck: nos primeiros instantes, frações mínimas de segundo após a explosão (até 10-36 segundos) o universo estava tão quente e a curvatura do espaço tão acentuada que não se pode esperar que o paradigma atualmente aceito das leis físicas se aplique. é provável que novas teorias sejam necessárias para um entendimento desta era, tais como Gravitação Quântica e Teoria de Cordas. Existem diversas especulações sobre que tipo de campo teria provocado a explosão, mas todas estas teorias estão ainda em fase de desenvolvimento. Pode-se dizer que não existe hoje um entendimento razoável da física operante na época.

A Era Inflacionária: Após este período o universo entra em sua fase inflacionária, um período em que os campos quânticos entre partículas determinam um rápido afastamento mútuo de todas as partículas existentes. Durante esta era se espera o aniquilamento da antimatéria gerada na explosão enquanto a pressão exercida pela radiação é excessivamente grande para permitir a associação de partículas elementares como os prótons e neutrons. Por outro lado a densidade da sopa primordial de partículas é tão densa que a radiação não consegue viajar livremente e se diz que matéria e radiação estão acopladas. A temperatura cai até 1015 K.

(3) É curioso observar que todos os processos de nucleosíntese conhecidos (o mecanismo de formação da matéria) indica aformação inicial apenas de hidrogênio e hélio (respectivamente números atômicos 1 e 2). Isto significa que todos os demais tipos de átomo são formados por processos posteriores, em particular no interior das estrelas, como exploraremos na seção sobre a evolução estelar!

Desacoplamento e Era Bariônica: com a queda da temperatura abaixo de 15 K a densidade de matéria se torna mais baixa e a radiação passa a viajar livremente. Neste período teria sido gerada a radiação que hoje se apresenta a nós como radiação cósmica de fundo, agora com temperatura de 3 K. Partículas elementares se agrupam em bárions (protóns e neutrons, os núcleos da matéria ordinária3) e, mais tarde, os eletrons passam a orbitar estes núcleos formando átomos de hidrogênio e hélio. Também nesta época se dá o início da formação das estruturas universais em grande escala, que futuramente darão origem às galáxias, aglomerados galáticos, filamentos, paredes e grandes vazios.

O Futuro do Universo: A história futura do Universo depende de densidade de matéria e energia nele existente. Apesar dos avanços recentes sobre o assunto, muitas dúvidas permanecem em aberto. Se a densidade de matéria fosse maior que a crítica o universo atingiria uma expansão máxima e depois voltaria a se contrair com toda a matéria se aglutinando em um gigantesco buraco negro. Literalmente “o céu cairia sobre nossas cabeças”. Já houve quem especulasse sobre a possibilidade de que, após a contração, uma nova explosão desse origem a um novo universo.

No entanto a densidade de matéria ordinária (chamada matéria bariônica, feita de núcleos com prótons e neutrons) é bem menor que a densidade crítica (em torno de 1%) e é portanto insuficiente para conter a expansão. Segundo a observação outras fontes de atração adicionais parecem existir, e este tem sido tema de intenso estudo. Existem medidas que indicam que o universo está muito próximo de sua densidade crítica, tornando-se assim necessário descobrir de onde vem a atração adicional, que não da matéria comum. Este é o chamado problema da massa faltante (missing mass).

Hoje é possível observar um objeto individual contido em uma galáxia outra que a nossa própria, e medir a sua velocidade. Ocorre que as velocidades de estrelas em torno de galáxias não obedecem as leis de Kepler, o que sugere a existência de uma matéria incomum permeando e envolvendo como um halo as galáxias. Esta é a chamada matéria escura (dark matter) que não emite luz e nem interage com a radiação emitida pela matéria comum, embora produza efeito gravitacional. Especula-se que parte da massa faltante possa ser encontrada ai. Além disto há a possibilidade que esta massa seja explicada pela presença de partículas elementares como o neutrino, que interage pouquíssimo com a matéria comum, ou pela existência de grande número de pequenas estrelas (ou grandes planetas) com uma massa insuficiente para iniciar a combustão nuclear que ocorre nas estrelas comuns e que são responsáveis pelo seu brilho. Há ainda a possibilidade de que algum efeito inerente ao próprio espaço-tempo, algo como a constante cosmológica de Einstein, que mencionamos antes, possa ser responsabilizada pela diferença da massa. De fato, medidas recentes indicam que o universo, ao contrário de estar sendo desacelerado pela atração gravitacional, como esperado, esteja sendo, pelo contrário, acelerado em sua expansão, como se ainda estivéssemos sob o efeito de algum campo inflacionário. Neste caso, ou no caso de verificarmos uma densidade abaixo da crítica, o universo se expandirá para sempre, se tornando cada vez mais frio e uniforme. De acordo com a lei da entropia as regiões de diferentes temperaturas se tornarão cada vêz mais homogêneas e não existirá diferenças de potenciais de qualquer tipo para que a matéria ou energia inicie novos processos tais como a formação de novos objetos celestes. Este é, de fato, um final monótono para o universo.

Bibliografia

Existem muitos livros bons sobre o assunto, no nível de divulgação científica. Entre eles:

  • Gleiser, Marcelo : A Dança do Universo – dos Mitos de Criação ao Big-Bang. São Paulo: Companhia das Letras, 1997.
  • ____ : O Fim da Terra e do Céu, São Paulo: Companhia das Letras, 2001.
  • Harrison, Edward :A Escuridão da Noite – Um enigma do universo, São Paulo: Jorge Zahar Editor, 1995.
  • Islam, J. N. : O destino final do universo, Rio da Janeiro: Francisco Alves,
  • Silk, Joseph : O Big Bang – A Origem do UniversoBrasília: Editora da Universidade de Brasília, 1985.
Para aqueles que procuram um conhecimento mais técnico e matemático sobre o assunto:
  • Morais, Antônio M. A. : Supernovas & Cosmologia, São Paulo: Livraria da Física, 2009.
  • ____ : Gravitação & Cosmologia, uma Introdução, São Paulo: Livraria da Física, 2010.
  • Souza, Ronaldo E. : Introdução à Cosmologia, São Paulo: Livraria da Física, 2004.

Devemos Acreditar na Ciência? (cont.)

Vamos tomar a seguir dois exemplos de teorias científicas, o modelo cosmológico padrão, usualmente chamado de Big Bang, e a Teoria da Evolução das Espécies.

Crer e conhecer

Você acredita que o universo surgiu em uma grande explosão?

O modelo do Big Bang, ou a Grande Explosão, é uma consequência da Teoria da Relatividade Geral de Einstein com o acréscimo de algumas pressuposições extras, como a homogeneidade e isotropia do conteúdo material do espaço. A teoria da relatividade, como já mencionamos, passou por inúmeros teste de verificação com níveis crescentes de precisão. A homogeneidade e isotropia são pressupostos adicionais e externos à teoria, que foram incluídos no início, para facilitar uma solução para as equações, que são um conjunto de equações diferenciais não lineares de difícil solução. Esses pressupostos precisam ser igualmente verificados para que a solução obtida com seu uso seja considerada válida. Hoje é possível fazer mapeamentos da estrutura do universo em grandes escalas e ele se mostra não homogêneo em escalas menores, aumentando sua homogeneidade (e isotropia) para grandes escalas. Além disso a radiação de microondas de fundo, remanescente de uma época em que o universo era muito quente, se mostra bastante uniforme embora exibindo pequenos agrupamentos localizados. De acordo com teoria vigente tais pequenos desvios da homogeneidade são exatamento aqueles necessários para que as grandes estruturas universais tais como galáxias e grupos de galáxias se formassem.

Existem diversos problemas em aberto e sob o estudo de cientistas em todo mundo, problemas que provavelmente trarão refinamentos e acréscimos ao modelo já delineado. Embora seja possível, não se espera que este modelo seja completamente descartado e substituído por outro radicalmente diferente. Por outro lado é muito provável que o modelo seja bastante expandido com a compreensão da gravitação em níveis microscópicos e com o aprofundamento da compreensão sobre a física das partículas elementares.

Você acredita na teoria da evolução?

A teoria da evolução é o conceito de que os organismos vivos se modificaram gradualmente e que estas modificações deram origem à multiplicidade dos seres hoje existentes. As modificações ocorrem por meio de mutações genéticas e através da deriva genética, um processo de embaralhamento de genes em suas respectivas posições. Tanto as mutações quanto a deriva ocorrem de modo aleatório. Modificações bem sucedidas são aquelas que geram indivíduos mais aptos à sobrevivência e são propagadas para gerações posteriores. Existem alterações que não aumentam nem diminuem as chances do indivíduo permanecer vivo, enquanto outras geram indivíduos menos aptos, que vivem menos e tendem a não gerar descendentes. Por meio deste mecanismo de seleção natural, um processo não-aleatório, as espécies se modificam e se tornam mais adaptadas ao ambiente onde vivem.

A teoria da evolução não é uma hipótese desprovida de provas, como sustentam alguns. Ela é uma teoria científica comprovada por uma grande série de registros fósseis que contam a história de como a vida evoluiu desde formas primitivas e simples até a multidão de seres hoje existentes. Esta teoria, proposta por Darwin, encontra grande oposição nos meios religiosos que, em sua maioria, afirmam que o ser humano foi feito por um ato único de um criador. A observação dos fósseis relata uma história diferente, mostrando as etapas pelas quais as espécies passaram até atingir o estado presente. Não se pretende dizer que a teoria é completa ou final. Assim como ocorre na física, em todas as demais áreas da ciência o conhecimento progride de forma recursiva, aproveitando as conquistas anteriores, aperfeiçoando aspectos errôneos e expandindo sua compreensão dos modelos.

A rejeição, muito mais emocional que objetiva, de que o ser humano não pode descender do macaco é descabida. De acordo com a teoria da evolução homem e macaco descendem de um ancestral comum. Aliás, de acordo com a teoria de Darwin, se considerarmos quaisquer dois seres hoje existentes, procurando em um passado suficientemente remoto encontraremos um ancestral comum a ambos. Uma consequência direta desta afirmação é a de que os humanos, brancos ou negros, europeus, africanos ou asiáticos, todos possuem um ancestral comum. Existem registros de diversos grupos de hominídeos espalhados pela Europa e África antigas mas apenas um pequeno grupo sobreviveu. Todos os humanos hoje existentes descendem de uma tribo que surgiu na África em torno de 150 a 200 mil anos atrás, o Homo Sapiens, com leves traços genéticos importados dos Neandertais através de cruzamentos entre estes dois grupos.

A teoria da evolução é uma proposta de explicação da diversidade da vida no planeta. Ela gera conclusões que podem ser verificadas na natureza e faz previsão sobre coisas que, em algum tempo, não eram conhecidas.

Mas, não é apenas uma teoria?

A palavra teoria , na ciência, tem um significado diferente daquele usado no cotidiano, onde ela é equivalente à hipótese. Se alguém investiga um crime, sem saber quem o praticou, ele busca se informar dos fatos conhecidos (analisando a cena do crime, entrevistando testemunhas, etc.) para então formular uma hipótese. Em seguida ele deverá testar a sua hipótese, eliminado suposições incorretas até ser capaz de indicar quem foi o criminoso. Neste sentido, uma teoria científica equivale à solução de um crime (embora sempre seja possível o surgimento de novos fatos e uma reviravolta completa no entendimento do que ocorreu de fato).

Devemos temer o avanço da ciência?

O desenvolvimento científico e tecnológico, como é bem comprovado pela história, sempre é acompanhado por perigos e ameaças. Uma mesma tecnologia pode ser usada para o benefício social e comunitário e simultaneamente para outro fim pouco construtivo e menos nobre. Por este motivo é necessário que a sociedade se mantenha vigilante e busque conhecer e participar das decisões sobre o uso das novas técnicas. Existem diversos mecanismos de controle, tais como os conselhos de ética para experimentos biológicos e envolvendo o ser humano ou testes em animais. Algumas experiências em psicologia realizadas no passado, tais como a exposição de pessoas a níveis extremos de tensão e violência, não seriam permitidas hoje. Com o avanço de novas técnicas em todas as áreas da ciência é provável que novos mecanismos de controle sejam criados. Estes mecanismos devem sempre envolver pessoas de várias áreas do conhecimento. Não se pode perguntar apenas aos biólogos se eles podem ou não clonar um ser humano, por exemplo. O interesse e a curiosidade científica, se desempedidos de compromissos sociais, certamente tenderiam a provocar absurdos como experimentações cruéis e revoltantes para com outros seres vivos ou perigosas para a comunidade. É necessário lembrar que, em muitos casos, a pesquisa é financiada com meios públicos e, mesmo que seja uma iniciativa privada, a comunidade inteira (e não apenas cientistas) deve se manisfestar.

No entanto é necessário que esta comunidade possua esclarecimento suficiente para construir suas decisões. A ignorância pode – e tem levado – ao atraso e excesso de apreensão. Um exemplo disto é o medo de que um acelerador de partículas provoque uma explosão de nível planetário durante uma de suas experiências. Outro exemplo importante é a objeção sistemática à vacinação e a pesquisa com células tronco. Este é mais um motivo importante para o aprimoramento da educação.

A falácia naturalista: existe uma crença muito difundida e arraigada, que provoca medo nas pessoas, a de que o ser humano não deveria alterar “o estado natural das coisas”. A expressão “produtos químicos” está vinculada à sensação de perigo, em um flagrante esquecimento de que tudo o que nos rodeia é composto por produtos químicos e a química é a base da própria vida. Na área da biologia lidamos diariamente com organismos modificados, tais como as rosas de muitas pétalas, os cachorros especializados em raças criadas artificialmente, gado resultante de inseminação artificial, vacinas produzidas pela manipulação genética do vírus que se quer combater, e muitos outros. Devido à eletrônica (uma aplicação da física quântica) usamos nos bolsos aparelhos onde eletrons atravessam barreiras que seriam classicamente proibidas (o chamado tunelamento quântico), fotos são obtidas através do efeito fotoelétrico e armazenadas magneticamente em componentes miniaturizados, nenhum deles existentes “in natura”.

Esta defesa da técnica não implica em relaxamento da vigilância. Muitas pessoas hoje temem que ondas eletromagnéticas geradas por antenas e aparelhos celulares e domésticos possam produzir danos à saúde. Até hoje não foram encontradas correlações entre o uso destes aparelhos (dentro de um regime normal e recomendado) e problemas de saúde. No entanto tais problemas podem surgir com o aumento da intensidade da radiação ou uso inadequado dos aparelhos. É necessário que se mantenha a pesquisa e a observação. Infelizmente um efeito danoso gerado por nova tecnologia pode só ser descoberto depois de algum tempo, quando o dano já foi provocado. Foi o que ocorreu no uso de chumbo em tintas aplicadas em casas (que contamina principalmente as crianças) e nas primeiras manipulações com materiais radioativos, muitos deles encontrados na natureza. Muitos dos pesquisadores iniciais na área morreram devido à super exposição à radioatividade. O uso do gás CFC (clorofluorcarbono) em aparelhos refrigeradores mostrou, com o tempo, ser uma solução inadequada para uso como gás resfriador devido à agressão à camada de ozônio na atmosfera terrestre. Em qualquer dos casos a solução para o problema é progredir com cautela e estar atento aos efeitos colaterais envolvidos em novas técnologias.

A ciência pode nos esclarecer sobre qual é o propósito da vida?

Esta pergunta envolve aspectos interessantes. Como discutimos no início e no estágio em que nos encontramos, este não é um objeto de consideração científica e, talvez, nunca venha a ser. O conceito de propósito ou meta para a vida é a formulação de um anseio humano, um desejo de continuidade e a busca de uma direção que pode não ter qualquer correspondência na natureza.

Algo análogo ocorre com nossa definição de justiça. Gostaríamos de crer que ela ocorre em todos os níveis e em todos os lugares mas, novamente, este é um conceito humano gerado por nossa percepção e capacidade de reflexão. Provavelmente a natureza ignora sumariamente este conceito, enquanto tigres devoram as impalas que, por sua vez, lutam para sobreviver e se multiplicam de modo que, mesmo depois de servirem de alimento para os felinos, ainda existem em quantidade suficiente para para continuarem em novas gerações.

Há, no entanto, algo a acrescentar: nas últimas décadas se observa uma crescente apatia entre os jovens e adultos que parecem padecer de desmotivação e ausência de propósito em suas vidas pessoais. Isto se reflete de modo importante na coletividade sob a forma de alienação social e sentimento de inadaptação em frente à uma sociedade complexa. Por isso muitos se apegam à ideologias pouco construtivas ou se agrupam em torno de temas irrelevantes. Uma das causas do problema está na situação político-econômica moderna e as deficiências na educação. Aparentemente vivemos em um mundo onde a progressão social se torna mais difícil.

No entanto vivemos um momento privilegiado na história do conhecimento. Temos agora como oferecer uma história consistente da formação do universo, não mitológica mas baseada em verificação objetiva, da formação dos elementos químicos, das estruturas cósmicas como os aglomerados galáticos, as próprias galáxias e sistemas planetários. Podemos reconstruir a aventura do surgimento da vida e sua evolução até os estágios elaborados em que se acham no presente. Conhecemos hoje o funcionamento do cérebro, a forma como suas partes se especializam para tarefas específicas, ou se reconfiguram para contornar um dano ao cérebro ou uma mudança drástica do ambiente. Estamos nos aproximando de obter uma descrição sólida do surgimento e funcionamento da consciência. Além dos aspectos teóricos a ciência aplicada á tecnologia tem tornado disponíveis aparelhos úteis ou simplesmente divertidos e o avanço desta sofisticação é vertiginoso. Acompanhar a evolução do conhecimento deveria ser uma aventura interessante e proveitosa para as pessoas, mesmo que nem todos participem desta construção . É como se tivéssemos à disposição um avervo gigante de livros e filmes de aventuras, repleto de novidades e surpresas a cada instantes e que, para nosso deleite, não termina nunca!

É verdade que a ciência está baseada sobre pressupostos não verificados?

Em algum grau a resposta para esta pergunta é afirmativa. Considerações sobre os fundamentos de qualquer ciência, ou da ciência como um todo, são sempre difíceis e delicados.

Um pressuposto é o de que a razão é necessária para se entender a natureza. Mas a razão apenas não é suficiente. O pesamento científico moderno trabalha com o conceito de que a interação entre razão e experimentação, entre a construções de modelos teóricos e a verificação empírica são indispensáveis. Evidentemente os dois aspectos padecem das limitações impostas por nossa capacidade de ver o que está acontecendo e o processamento dos dados obtidos. A ciência busca contornar o problema da limitação sensória com aparelhos que extendem a nossa capacidade, tais como telescópios, microscópios, antenas que observam o céu em faixas eletromagnéticas além da luz visível, aceleradores de partículas (que buscam “ver” um mundo muito pequeno), etc. Nossa capacidade intelectiva pode ser ampliada (e já está sendo) por meio do uso de computadores.

Não podemos afirmar, no entanto, que nada existe além daquilo que podemos ver, mesmo com os sentidos ampliados. Nem que uma compreensão mais profunda das coisas exija um tipo de processamento a que ainda não temos acesso.

Outra conceito de uso geral representa uma guia para o pensamento, uma diretriz de como progredir e é conhecido como “a navalha de Occam”. O monge William de Occam, teólogo e lógico inglês do século 14, fez uso frequente e efetivo deste conceito, já existente em sua época. Segundo ele não se deve incluir um número maior que o necessário de hipóteses para a explicar um fenômeno ou acontecimento. Uma leitura moderna da navalha de Occam seria a de que qualquer teoria deve ser composta pelo menor número possível de variáveis, causas ou fatores. De certa forma isto nos leva à suposição de que o Universo é simples, de preferência à complexo, e esta “simplicidade” faz com que possamos compreendê-o com o nosso intelecto. Este princípio do minimalismo e simplicidade é coerente com a expectativa de que as leis universais são regulares e sistemáticas, pois um universo caótico onde as leis podem se alterar no tempo e variar segundo a localização no espaço é muito mais complexo e e incompreensível.

O pensamento moderno é fortemente influenciado pela filosofia da Grécia Clássica, principalmente Pitagórica e Platônica. Uma natureza que pode ser compreendida pela razão nos leva a crer que é possível fazer uma descrição matemática do cosmos e de suas partes. Segundo Pitágoras (ou algumpensador pitagórico) o número está por trás de todas as coisas e, se uma equação ou lei matemática falhar na explicação de um fato certamente deverá haverá outra mais exata para substituir a equação defeituosa! A experiência histórica tem mostrado, até agora, que este é um fundamento sólido.

Buscando por Deus

De acordo com Occam:

Não se deve multiplicar o número de entidades além do necessário, pois nada deve ser proposto sem um motivo, exceto se for algo evidente ou conhecido pela experimentação…”

Para ele a única entidade realmente necessária para explicar qualquer coisa seria Deus. No entanto tal idéia teve papel diferente na história do pensamento, exatamente no expurgo de entidades metafísicas ou desnecessárias.

A explicação religiosa para a origem do Universo e dos seres falha, segundo este crivo, porque, para explicar o desconhecido, insere uma entidade muito mais complexa e ainda mais desconhecida, representada pelo conceito de Deus.

Historicamente a ciência necessitou expurgar a crença de que entidades supernaturais — como deuses, por exemplo — possam interferir arbitrariamente no funcionamento das coisas. Era uma noção comum na cosmologia medieval que Deus, diretamente ou por meio de seus anjos, guiava todas as coisas e as dirigia, inclusive os planetas que teriam seu movimento mantido por uma hoste de seres celestiais. O conceito era compatível com a física de Aristóteles que afirmava que um objeto livre (não submetido a alguma força externa) deveria perder velocidade até ficar em seu estado natural, o repouso. No entanto um novo modelo foi construído com após a introdução da noção de experimentação, por Galileu (que mostrou estar incorreta a física de Aristóteles), um longo processo de medidas das posições planetárias por Kepler e Tycho Braher e a criação de um modelo mais simples e bem sucedido com a teoria de gravitação universal de Newton. Este modelo era lógico, internamente coerente e bem verificado pela observação e prescindia da noção de agentes externos.

A maioria dos pensadores, mesmo até a época de Laplace, buscava encontrar leis e regularidades no universo exatamente para demonstrar a existência da interferência divina. Aos poucos o mecanismo de funcionamento do movimento planetário foi sendo esclarecido e a explicação supernatural foi empurrada para níveis mais abstratos. A influência de Deus no movimento planetário teria sido, então, como um motor inicial, o fator que colocou todo o universo em movimento.

A ciência, no entanto, repousa sobre a crença de que o universo pode ser compreendido pela mente humana, de que as leis da natureza são universais e funcionam em todas as partes do universo e em todos os tempos. A estabilidade e permanência da lei é um pressuposto básico: seria impossível fazer ciência em um mundo inconsistente onde fenômenos ocorressem de forma diferente e aleatória a cada instante em que se fizesse um experimento. Da mesma forma saberíamos muito pouco sobre o universo se as leis que funcionam na Terra não fossem as mesmas que atuam no Sol, nas estrelas ou em galáxias distantes. Não sabemos se existem regiões do universo onde leis diferentes se aplicam, nem se as leis atuais se alteram lentamente com a evolução do universo.

Uma física na terra, outra no céu?

No início da construção do pensamento científico, desde pensadores gregos até a Idade Média, se acreditava que as leis terrenas não se aplicavam aos objetos celestes, incorruptíveis e divinos. Este foi um dos motivos pelos quais Galileu teve dificuldades com a igreja quando revelou a existência de manchas no sol, vistas através do telescópio por ele construído. Um passo importante para a compreensão de que as leis meteorológicas (relativas aos objetos celestes) são as mesmas leis que regem objetos terrenos foi dado por Newton, ao anunciar a lei da gravitação universal. Embora isto esteja longe de ser óbvio, a atração que a Terra exerce sobre uma maçã que cai e sobre a Lua é a mesma, embora seu efeito nos dois casos pareça ser diferente. Na visão moderna a mesma física que descreve fenômenos na terra descreve também o que ocorre dentro do Sol ou de duas galáxias distantes em colisão.

Um exemplo disto foi a descoberta do elemento hélio no sol antes mesmo que fosse encontrado na Terra. Um estudo do espectro luminoso da luz solar mostrou que havia no Sol um elemento químico compatível com aquele previsto teoricamente em uma análise da tabela periódica, com numero atômico z=2 (dois protons no núcleo).

Como resolver os problemas existentes quanto à divulgação científica?

Um volume grande de publicações é produzido hoje. Algumas delas contém explorações de alguma teoria aceita, tentativas de validar (ou invalidar) modelos propostos, o lançamento de novas hipóteses ou especulações selvagens com poucas changes de serem um dia verificadas. Muitas outras existem que contém apenas erros e tolices que não devem ser levadas a sério. Com a internet surgiram revistas “de aluguel” que cobram do pesquisador para publicar seus artigos e quase sempre têm pouco valor. Tudo isto faz com que seja difícil, até para um especialista, acompanhar a evolução de sua área do conhecimento.

O volume de conhecimento acumulado obriga as pessoas a passarem boa parte de suas vidas nos bancos escolares. Além da necessidade de formar pessoas especializadas, que podem produzir novas soluções ou gerenciar a tecnologia existente também é preciso difundir a ciência para o cidadão comum, não técnico. Caso contrário as pessoas usarão tecnologia como uma caixa preta ou um instrumento mágico, e se tornarão dependente daquele que detém o conhecimento. Além de não compreender minimamente o mundo onde vive ele não poderá tomar decisões nem contribuir para um apropriado progresso da sociedade.

Novamente nos deparamos com a necessidade de uma educação de qualidade, inclusive para a formação continuada de professores e outros profissionais. É necessário tambem aprimorar a qualidade da informação científica passada por veículos como televisão, rádio, revistas e jornais, cuja qualidade hoje é questionável. O compartilhamento de bons canais disponíveis na internet pode ajudar neste aspecto.

Porque a imprensa divulga tantas tolices e superstições?

A imprensa brasileira (e no resto do mundo), quando menciona avanços e novidades científicas, difunde conceitos distorcidos e obscuros, quando não totalmente falsos. É raro que consultem um especialista que, no mínimo, ajude na compreensão de uma descoberta ou na tradução e leitura de artigos estrangeiros. Um exemplo do descompromisso com a informação é a exploração de fenômenos paranormais, avistamentos de OVNIs, animais sobrenaturais, medicamentos mágicos e outras superstições. Isto é seguido pela ausência de acompanhamento da informação. Por exemplo, um jornal pode noticiar com ênfase o avistamento de um objeto voador não identificado e, mais tarde, não mencionar ou dar a mesma ênfase para a descoberta de que o objeto se tratava de um balão meteorológico ou do reflexo luminoso de um planeta. No Brasil (e no mundo) se deu grande espaço para a divulgação do suposto paranormal Uri Geller mas pouquíssimo foi dito sobre ele ter sido desmascarado como falsário.

Esta mídia oportunista é a mesma que explora eventos reais que causam comoção pública, dotando-os de uma importância manipulada e artificial, enquanto se calam sobre temas de maior importância mas menor capacidade de gerar lucro. Esta é uma forma de perpetuar e até aprofundar a ignorância. Mais uma vez apenas um leitor consciente pode reverter esta situação cobrando qualidade do veículo que acompanha.



Teoria, Hipótese e Modelo em Física


Existe uma ambiguidade na terminologia moderna para tratar da ciência, em particular da Física, que dificulta a compreensão de pessoas leigas sobre os avanços mais modernos. Este ambiguidade se refere ao significado das palavras hipótese, modelo e teoria e assume diversos níveis de complexidade.

Primeiramente é necessário entender que o conhecimento científico é uma estrutura complexa feita de conceitos, definições e consequências, acumulada de modo gradual e recursivo. Do ponto de vista lógico esta estrutura deve ter tanta coerência interna quanto possível. Do ponto de vista empírico ela deve ser constantemente testada em relação a seu objeto, a natureza. O processo de aquisição do conhecimento pela ciência consistem uma interação entre o pensamento lógico formal e a experimentação.

A descrição de um fenômeno, ou conjunto relacionado de  fenômenos, assume a forma de um modelo, geralmente expresso sob forma matemática(1). Um modelo é, portanto, uma descrição ou um mapa, uma representação esquemática de algo que ocorre na natureza. O modelo(2) proposto deve ser consistente e não possuir incongruências lógicas internas, tanto quanto possível(3). Em seguida ele deve ser capaz de fazer previsões observáveis — sem as quais ele não seria científico, embora possa constituir-se em boa filosofia — e estas previsões devem ser testadas por meio da experimentação ou da observação — quando a experimentação não é acessível, como é o caso da observação astrofísica.

Modelos são normalmente apresentados como hipóteses, algo a ser verificado. A comunidade científica atual possui uma dinâmica própria de atuação que envolve grande volume de publicações, mensagens e postagens eletrônicas que circulam entre os interessados que, ao receber uma nova proposta, passam a trabalhar nela buscando por falhas ou inconsistências ou, não encontrando estas falhas, procurando explorar suas consequências. Os grupos voltados para o desenvolvimento teórico agem primeiro e os modelos considerados sólidos e promissores são passados para laboratórios e observatórios que procurarão verificar se estão corretas as previsões daquela proposta. Hipóteses verificadas e embasadas por uma formulação teórica sólida se agregam como novo bloco ao edifício científico, passando a serem consideradas uma teoria.

Infelizmente existe também o uso consagrado da palavra teoria para uma outra classe(4) de modelos que ainda estão em fase especulativa e não foram verificados sob o escrutínio da experimentação. Talvez o melhor exemplo seja o da teoria das cordas (ou string theory, em inglês). A teoria das cordas, em sua versão mais simples, parte da suposição de que as partículas elementares não são pontuais e sim cordas ou fios unidimensionais. Existem ainda modelos onde estas cordas são substituídas por membranas de duas dimensões ou mesmo por objetos com volumes, em três ou mais dimensões. Estas teorias buscam resolver dificuldades associadas ao modelo de partículas, bem representadas na teoria quântica de campos, e sua interface com a teoria da relatividade geral. Apesar de ser matemáticamente coerente e elegante, e ocupar a atenção de grande números de pesquisadores, este conjunto de modelos permanece com status especulativo. A maior parte de suas previsões só pode ser verificada para altíssimas energias, em níveis ainda inacessíveis para o estágio atual da tecnologia de aceleradores de partículas.

A física moderna está estabelecida sobre fundações sólidas e é incorreto dizer que a ciência é instável e que se altera todo o tempo. Diferente da matemática, que floresceu em grande estilo entre os pensadores gregos antigos, a física só teve seu início concreto com a contribuição de Galileu Galilei e os pensadores de seu tempo. A mecânica clássica e a lei da gravitação universal, juntas com a teoria eletromagnética e a termodinâmica constituem as teorias básicas de sua fundação. Apesar do sucesso experimental destas teorias existe uma incoerência entre a mecânica clássica e o eletromagnetismo. Da solução deste conflito surgiu a Teoria da Relatividade Especial, mais tarde ampliada para a Teoria da Relatividade Geral, a principal fundamentação teórica para a descrição da gravitação.

A experimentação impôs ainda outra alteração radical, a Mecânica Quântica, inicialmente obtida de modo inconsistente com a relatividade especial. As tentativas de se resolver esta inconsistência deram origem à Teoria Quântica de Campos, a principal base de entendimento das partículas e suas interações em altas energias. As previsões desta teoria são verificadas em laboratório com alta precisão. No entanto, ela não inclui ou considera a participação da gravitação. A busca de uma teoria quântica unificada para os campos conhecidos é bem sucedida, exceto pela não inclusão da gravitação que, por sua vez, não possui descrição quântica bem definida. Este é o estado da física atual, contendo blocos sólidos e bem verificados exceto pelo fato de que estão inconsistentes entre si, mais ou menos como ocorreu entre a mecânica de Newton e o eletromagnetismo de Maxwell.


Ainda sob o impacto do grande feito de Einstein, que obteve grande sucesso com bases quase inteiramente teóricas e filosóficas, muita especulação tem sido feita nesta área enquanto poucos resultados práticos e experimentais tem sido alcançados(5). Existem modelos hipotéticos (que evitarei aqui chamar de teorias) propondo que o universo é pequeno e dotado de topologias incomuns, ou modelos onde o universo é composto por muitas folhas (os multiversos), modelos que envolvem grande número dimensões ou espaços-tempos complexos (no sentido matemático, usando números imaginários), e muitos outros. Quase sempre estes modelos são tentativas de solução do problema da inexistênciade uma descrição quântica para o campo gravitacional.

Por outro lado grandes problemas surgem da observação, particularmente obtida por grandes telescópios como o Telescópio Espacial Hubble. O universo não se comporta como “deveria”, em acordo com as teorias aceitas, dadas a densidade de massa e energia observadas. Em grande escala ele não se desacelera como previsto — e até se acelera em sua expansão — no que consiste o problema de dark energy ou energia escura. Até mesmo em escalas muito menores que as cosmológicas, objetos em torno de galáxias não possuem as velocidades previstas — o problema de dark matter ou matéria escura. Muita especulação e um grande número de tentativas têm sido feitas por pesquisadores do mundo inteiro, na busca de solução para estes problemas. Vale no entanto lembrar que um esforço direcionado para esclarecimento do público quanto a estes esforços é uma contribuição importante para a educação e crescimento intelectual de todas as pessoas e não só daquelas que se dedicam ao estudo científico.

Notas:
(1) As relações entre modelos e sua linguagem matemática não são inteiramente claras e permanecem com tema de debate atual. Porque um modelo necessita ser expresso matematicamente? Todas as descrições da natureza e do ser humano se encaixam (ou encaixarão, um dia) dentro de modelos matemáticos? Sabemos que a matemática é uma linguagem extremamente precisa e que permite a descrição e previsão detalhadade entidades observáveis na natureza. Em geral se supõe que uma teoria ou modelo não expresso sob forma matemática está incompleto, necessitando de aperfeiçoamento. (voltar)


(2) A teoria de Newton é um exemplo de mapa ou modelo bem estabelecido como correto. Sua correção, no entanto depende da delimitação de sua região ou domínio de funcionamento. (Veja nota 3). O modelo planetário dos átomos foi útil durante algum tempo para levar à compreensão de um modelo bem mais complexo que é a descrição quântica da matéria. (voltar)

(3) Parece não ser possível construir sistemas lógicos fechados e totalmente imunes à inconsistências internas. Além disto não existe a presunção de que os modelos, mesmo os mais bem sucedidos, estejam completos e em total conformidade com a natureza. Por exemplo, a mecânica de Newton é formalmente consistente e descreve com excelente precisão o movimento de objetos na terra, de planetas e pedregulhos em órbitas no espaço, satélites de comunicação, etc. Ela não é válida, no entanto, na descrição de movimentos em altas velocidades, comparadas à velocidade da luz, ou de objetos de massa muito pequena. Nestes casos é necessário usar, respectivamente, a Relatividade Especial e a Mecânica Quântica. A Teoria da Relatividade Geral, que é uma generalização da especial, tem sido testada com ótima precisão em inúmeros experimentos. No entanto a própria teoria preve regiões ou domínios onde ela falha, como ocorre nas proximidades de singularidades tais como os buracos negros ou o big bang. (voltar)

(4) Na linguagem cotidiana é frequente se dizer: “eu tenho uma teoria para explicar tal fato”, significando que o autor da expressão tem uma hipótese ou, até mesmo, uma suposição que muitas vezes nem tem um bom fundamento. Este uso causa problemas.

Charles Darwin

Por exemplo, entre os detratores da visão de Darwin da evolução das espécies é comum se dizer que a Teoria da Evolução é “apenas uma teoria”. Em sua interpretação científica mais rigorosa uma teoria nunca é apenas uma teoria pois já passou pela peneira da consistência lógica e da experimentação (neste caso, mais da observação de fósseis e outras evidências). Os dicionários, tanto em português como em inglês, trazem as duas definições de teoria, tanto como conjunto lógico de proposições e princípios para a explicação de uma classe de fenômenos, quanto a de uma explicação tentativa e conjectural. Seria algo interessante alterar estas definições, talvez usando teoria como algo que superou o teste da verificação e conjectura ou hipótese para os demais casos. Um complicador está no fato de que modelos hipotéticos e conjecturais, quando bem sucedidos, passam a ser considerados teoria de forma contínua, na medida em que são verificados, não havendo uma delimitação muito clara entre estas categorias. Hipóteses fracassadas, no melhor dos casos, entram para a história! (voltar)

(5) Alguns pesquisadores, mesmo entre os mais sérios, incorrem no erro de, ao relatar para o público leigo suas especulações, as descrevem como se fossem teorias comprovadas. Eles dizem coisas como: “o universo não teve um início” ou “o comportamento quântico das partículas evitará que o universo tenha um fim” … etc. Por mais louvável que seja sua empolgação com a própria pesquisa é necessário lembrar que faltam ao grande público fontes confiáveis de informações sobre ciência e tecnologia. No Brasil, por exemplo, a divulgação científica é muito deficiente e uma notícia divulgada pela grande mídia quase nunca esclarece um mínimo sobre o fato que se quer relatar. (voltar)

Teoria Resumida das Cordas

Hubble Deep Field. Ao focalizar uma região aparentemente vazia do céu o telescópio espacial Hubble fotografou uma grande quantidade de galáxias!

Devemos Acreditar na Ciência?


If you have to ask
what jazz is,
you’ll never know.
Louis Armstrong

 

O que é ciência?

A palavra ciência é derivada de scientia, uma tradução latina para o grego episteme, ambas significando conhecimento. A ciência é um empreendimento, um esforço coletivo humano para compreender o universo, a natureza e o próprio ser humano.

Qual é o objeto da ciência?

Qualquer coisa que possa ser verificada em repetidos experimentos ou observações é um objeto da ciência. Objetos além da possibilidade de observação e experimentação estão fora do escopo científico, existam ou não. Por este motivo a ciência não trata de um objeto fixo mas se expande na medida em que a própria ciência se expande. Uma discussão sobre a existência de prótons, elétrons e neutrons seria metafísica e não científica na época de Galileu ou Newton pois nenhum experimento ou observação acessível aos pesquisadores da época permitiria chegar a uma conclusão a favor ou contra a existência destas partículas.


Leonardo da Vinci foi um representante importante do renascimento, uma era onde arte e ciência não estavam dissociadas. Ele tentava compreender um fenômeno descrevendo-o em detalhes, muitas vezes por meio de suas gravuras espetaculares, e não tinha grande preocupação com aspectos teóricos.

Além da observabilidade o tratamento de um objeto científico deve estar embasado em uma formulação teórica ou modelo que permita sua compreensão, mesmo que parcial ou fragmentada. A mera realização de um fenômeno em laboratório não torna imediatamente aquele fenômeno um objeto de estudo científico se não existem modelos ou teorias que possibilitem sua compreensão. Historicamente isto foi ilustrado inúmeras vezes por meio de resultados totalmente inesperados que acabaram sendo ignorados ou vistos como meros erros experimentais para ser, mais tarde, reconhecidos como descobertas novas e importantes. Portanto a ciência não evolui nem por meios empíricos nem formulações racionais isoladamente mas consiste em uma interação permanente entre modelos teóricos e feitos experimentais (ou observacionais).

Como progride a ciência?

A ciência evolui através da observação de fenômenos, sempre que possível realizados em laboratório sob condições controladas. Muitas vezes um fenômeno não pode ser reproduzido em laboratório mas deve ser observado diretamente na natureza. Isto ocorre na astrofísica, por exemplo, onde os objetos sob estudos em geral se encontram distantes e os eventos ocorrem em escalas gigantescas. Também existem situações onde o custo do experimento é proibitivo ou a ética impede sua realização, tal como estudos sobre a psicologia ou genética humana. Modelos são criados para explicar o que se observa e são verificados por meio de novos experimentos. Por isto todo modelo científico deve prever novos fatos, observados ou extraídos da experimentação, possíveis de serem verificadas. Experimentos com resultados positivos levam à uma confirmação parcial do modelo enquanto um único resultado negativo, se devidamente verificado, deve levar ao abandono completo daquela formulação. Nenhum modelo é considerado uma verdade final e definitiva mas uma aproximação recursiva, uma boa descrição de parte da natureza.

Neutrinos mais rápidos que a luz?

Na foto: anúncio do resultado do experimento com neutrinos supostamente mais rápidos que a luz no CERN, 23 de setembro de 2011.

Em Outubro de 2011 um grupo de pesquisadores do projeto Opera estavam realizando medidas do tempo necessário para que neutrinos emitidos no CERN, na Suíça, fossem detectados na Itália. Estes neutrinos eram emitidos no CERN, viajavam 730 km por baixo da crosta terrestre e, aparentemente, foram detectados na Itália em tempo inferior ao que seria gasto por um feixe de luz viajando pela mesma distância. O grupo anunciou que tinham encontrado neutrinos com velocidade superior à velocidade da luz.

Como esta afirmação contradiz um postulado importante da teoria da relatividade a comunidade científica reagiu, como sempre faz, com ceticismo. Se correta a notícia implicaria em uma revisão profunda de princípios bem estabelecidos da física, entre eles a própria teoria da relatividade especial, TRE. A TRE é construída sobre o postulado de que a luz viaja com velocidade limítrofe, que não pode ser alcançada por nenhum corpo com massa não nula. Embora essa pareça ser uma atitude conservadora ela é necessária: o anúncio de qualquer nova descoberta deve ser verificado em outros laboratórios, o que é feito em geral por cientistas de todas as partes do mundo. Afirmações extrordinárias como esta exigem comprovações igualmente extraordinárias antes de serem aceitas. Desta forma erros ou enganos propositais são eliminados e não se perde tempo reformulando teorias bem verificadas.

Diversos grupos repetiram o experimento e encontraram uma velocidade compatível com as teorias aceitas: neutrinos, como partículas de massa de repouso nula, viajam com a velocidade da luz. Mais tarde o próprio grupo Opera anunciou a descoberta de um cabo ótico mal afixado provocou um atraso em suas medições que explicaria a medida incorreta.

Também pode ocorrer que um experimento resulte em verificações totalmente diferentes daquelas esperadas, forçando uma revisão profunda na ciência da época e proporcionando um grande progresso.

Resultados negativos importantes

Em algumas situações ao longo da história da ciência experimentos com resultados negativos foram extremamente importante para a compreensão da natureza. Na física um dos casos mais conhecidos se deu com o experimento de Michelson e Morley, em 1887. Antes da formulação da Teoria de Relatividade, por Einstein, uma incompatibilidade entre as teorias do eletromagnetismo de Maxwell e a mecânica clássica de Newton vinha incomodando físicos e matemáticos do final do século 19. Nada na teoria de Newton restringe a velocidade de propagação da luz enquanto a teoria eletromagnética prevê uma velocidade fixa e constante, além de independente do observador. Segundo a teoria de Maxwell a luz é uma onda e, portanto, era natural especular à respeito do meio por onde esta onda se propagava. Naquele época este meio hipotético foi denominado éter. Parte da questão poderia ser resolvida medindo-se a velocidade da luz para observadores com diferentes movimentos em relação à fonte emissora da luz. Michelson e Morley construiram um instrumento composto por dois braços perpendiculares e um conjunto de espelhos destinados a medir variações da velocidade da luz quando viajando em direções parealela ou perpendicular ao movimento da Terra pelo espaço. Os dois repetiram a experiência em diversos momentos do dia e ao longo dos meses, buscando detectar o movimento da Terra em relação ao suposto éter. No entanto, apesar de terem construído um aparelho de altíssima sensibilidade, não detectaram nenhuma variação.

Este resultado negativo mostrou que a luz não necessita de um meio para se propagar e que sua velocidade é a mesma para qualquer observador em movimento em relação à fonte. Esta é um dos postulados básicos da Teoria da Relatividade Especial.

A Relatividade de Einstein, tanto a especial como a geral, é um bom exemplo de como uma teoria revolucionária é sempre recebida com ceticismo e desconfiança mesmo que apresentem boa consistência teórica ou sejam verificadas experimentalmente. Ambas as formulações conduzem a conclusões importantes que podem ser verificadas em laboratório ou observações astronômicas, estando todas elas em excelente conformidade com as teorias. Apesar do sucesso, hoje amplamente reconhecido, se uma única observação for feita contrária às teorias elas terão que ser refeitas e substituídas por novos modelos. No caso da relatividade, na medida em que o tempo passa e as observações se tornam cada vez mais precisas, cresce a confiança de que este é um modelo correto para os domínios testados.

Mecânica Clássica, Quântica e Relativística

Nenhuma experimentação pode levar à conclusão de que o modelo testado esteja correto em todos os domínios de verificação. Pelo contrário, é crença comum no meio científico que, para domínios de altíssimas energias (o que significa altas temperaturas ou altas velocidades), a teoria da relatividade deve ser modificada. A teoria da relatividade geral, curiosamente, prevê seu próprio fracasso para regiões do espaço onde as densidades de matéria-energia sejam muito altas.

Newton, Einstein e Planck

Um exemplo histórico interessante de como uma teoria aceita e bem estabelecida não se sustenta em todos os domínios de aplicação se deu com a mecânica newtoniana. Newton apresentou sua formulação da mecânica clássica através de um formalismo matemático elegante que ele mesmo desenvolveu (simultânea e independentemente com Leibniz), o Cálculo Diferencial e Integral. Este modelo foi testado em diversas situações tendo se mostrado eficiente para descrever o movimento de partículas e corpos com altíssima precisão. Estes testes, no entanto, foram sempre realizados com velocidades pequenas se comparadas à velocidade da luz, como era possível com a tecnologia existente até o final do século 19. Para velocidades altas, tais como as observadas no interior de aceleradores de partículas, em raios cósmicos ou alguns objetos astronômicos, a mecânica clássica não fornece resultados compatíveis com os observados. Neste caso torna-se necessário usar a teoria da relatividade. Ocorre ainda que, se as energias envolvidas forem muito pequenas, comparadas à uma certa quantidade minúscula de energia, o quantum descoberto por Planck, torna-se necessário usar a mecânica quântica. Estas duas teorias se reduzem à mecânica newtoniana quando as escalas de velocidade e energia se reduzem à escala newtoniana (basicamente aquela observada no cotidiano!) Não é correto, portanto, se afirmar que Einstein e os formuladores da mecânica quântica mostraram que Newton estava errado, mas sim que ampliaram os limites de aplicabilidade de sua teoria.

É bem conhecido hoje que os efeitos observados nos novos domínios explicados pelas teorias mecânicas modernas são não intuitivos e violam nosso senso comum, desenvolvido ao longo de longas eras pela evolução e moldados pela experimentação sensorial ordinária.

Que benefício tiramos do desenvolvimento científico?

Em uma primeira abordagem esta pergunta admite uma resposta muito simples. A descoberta de microorganismos tais como fungos, bactérias, protozoários ou vírus, e os métodos de impedir alguns de seus efeitos nocivos sobre a saúde humana por meio de antibióticos, por exemplo, tem melhorado a qualidade de vida das pessoas no planeta e extendido em muito a longevidade. As técnicas avançadas de produção de vacinas, algumas delas envolvendo a manipulação sofisticada de genes, têm salvado muitas crianças da morte prematura ou de doenças fortemente debilitantes. O uso da eletricidade para impulsionar máquinas ou para acionar equipamentos eletrônicos é outro exemplo imediato. A civilização atual colapsaria quase instantaneamente se, por qualquer motivo, não pudéssemos mais usar a eletricidade. Surpreendentemente, colapsaria também sem o uso de satélites transmissores de informações, alguns deles em órbitas geoestacionárias tão baixas que necessitam de correções feitas com a teoria geral da relatividade. Você pode, se quiser, se recusar a usar efeitos quânticos mas, para isso, teria que abandonar seu telefone celular, seus computadores, sua tv inteligente, todas as suas operações bancárias.

Em outro nível, no entanto, esta pergunta se torna mais difícil de ser respondida. A tecnologia tem tornado a vida humana de melhor qualidade, no sentido do bem estar, da felicidade e da realização pessoal? E o que pensar sobre os desafios e ameaças provocados pela própria tecnologia, tais como o aquecimento global, a poluição ou o risco do desenvolvimento de microorganismos artificiais e perigosos para a vida humana e do planeta?

Por um lado não é possível separar a história humana do desenvolvimento da tecnologia. Desde a pre-história usamos tecnologia nos alimentar, para tecer, para modificar espécies vegetais e animais, para nos locomover e, principalmente, para conhecer o mundo e desenvolver a própria ciência. Existem pesquisas que mostram que o desenvolvimento das camadas superiores e mais sofisticadas do cérebro humano se tornou possível devido à tecnica de cozinhar o alimento, o que permite que consumamos uma variedade muito maior e mais farta de produtos.

Por outro lado, não se pode negar que a tecnologia introduziu problemas novos, alguns muito sérios. Seriam possíveis outros caminhos? O desafio moderno é gigantesco e a própria sobrevivência da espécie depende dos rumos que a sociedade decidir tomar neste momento. Infelizmente existe uma inércia muito grande imbutida na natureza humana, que é ainda maior nos organismos e instituições. Decisões que implicam em severa redução de lucros para as empresas, por exemplo, são difíceis e improváveis até que o prejuízo ambiental seja avassalador. A não linearidade da resposta da natureza pode fazer com que o desgaste só seja reconhecido quando for tarde demais. Em outras palavras pode muito bem ocorrer que o estrago neste momento já tenha ultrapassado o ponto onde um retorno seja possível.

Considere, por um exemplo, a questão climática. É amplamente reconhecido que estamos passando por um processo que aquece o planeta e que este fenômeno está em aceleração. O aquecimento global, entre outras coisas, produz diferenças acentuadas entre climas quentes e frios. No hemisfério norte ocorrem invernos muito rigorosos porque correntes de ar frio do pólo norte consegue quebrar a barreira que antes impedia seu progresso até áreas ao sul. Este resfriamento local causa ceticismo entre as pessoas leigas sobre se de fato há um aquecimento.

A noção de que podemos combater os problemas gerados simplesmente abandonando a tecnologia é, no mínimo, ingênua. Certamente necessitaremos de mais ciência e de mais tecnologia (e muita boa vontade) para vencer o problema do aquecimento global, da poluição, da escassez de água potável, do aumento de agrotóxicos na produção de alimentos, do perigo das armas químicas, biológicas ou nucleares, do crescimento da população de bactérias super resistentes, e dai por diante.

Muitas ameaças atribuídas à tecnologia não são, de fato, devidas a ela. Por exemplo, a internet é um fantástico veículo de informação, um apoio às liberdades democráticas e uma ferramenta poderosa de combate aos regimes totalitários e, eventualmente, ao fanatismo, intolerância e fundamentalismo supersticioso. No entanto ela aumenta dramaticamente a exposição das crianças e jovens à pornografia, a conteúdos impregnados de ódio e discriminação e intolerância política e religiosa. Todos estes elementos obscuros são partes comuns de nossa história e não surgiram com a internet. Não cabe, portanto, atribuir a ela uma culpa direta por sua existência mas apenas pela facilidade de sua difusão. Quando a expressão individual é livre e as opiniões podem circular livremente deve-se esperar também a circulação de conteúdo de valor duvidoso. Esta dificuldade não pode ser resolvida através do cerceamento da liberdade de expressão ou da circulação das ideias. Pelo contrário, a ampliação da informação, o esforço pela melhoria de sua qualidade e do alcance da informação são as formas cabíveis de se atacar o problema. Dando um exemplo, com a liberdade de postagem de temas diversos na internet os pais não podem impedir que seus filhos tenham acesso à pornografia (se é que puderam algum dia!) Uma informação correta sobre a sexualidade, sobre as perversões e sobre os perigos envolvidos deve ser suprida, de preferência pelos pais e cuidadores mas também pela escola e por sites dedicados à difusão do estudo e do conhecimento.

Devemos acreditar na ciência?

Esta pergunta não é de todo apropriada (daí a citação inicial da célebre frase de Louis Armstrong, sobre o jazz). A ciência não envolve fé ou crença mas entendimento de suas teorias, quando possível, ou a compreensão de como ela funciona. Está claro que na atualidade nenhuma pessoa consegue dominar os diversos ramos do conhecimento, como ocorria no passado. Então ela deve ter o entendimento de como o conhecimento é obtido, do porque um cientista afirma ou nega um fato, de como a comunidade testa, valida ou exclui uma proposição. Para isso precisamos ter uma população instruída.

Infelizmente, vivemos hoje uma crise que atinge quase todos os paises, na qualidade da educação. No geral o problema é mais grave nos países com menor desenvolvimento sócio-econômico. A desigualdade na da educação científica e tecnológica entre as nações funciona como fomentador da dependência dos mais pobres e da exploração econômica por parte dos detentores do conhecimento.

A má formação no entendimento das pessoas produz também dificuldades internas. Como podemos esperar que um cidadão faça uma escolha esclarecida sobre tomar ou não uma vacina – ou aplicá-la em seus filhos – se ele não possui um mínimo de conhecimento sobre o tema?

Aceita uma dose de vacina?

O que te parece perguntar ao cidadão brasileiro médio: “Você aceita tomar uma vacina feita com partes do microorganismo a ser combatido, ou com o próprio microorganismo, ainda vivo mas enfraquecido, com partes do DNA de um vírus, onde a habilidade do vírus em afetar a saúde humana está desabilitada ou enfraquecida?” E ainda acrescentamos: “Não se preocupe, a vacina passou por teste de duplo cego randomizado, 350 pessoas sofreram de efeitos colaterias adversos e somente duas mortes foram verificadas em uma amostra de 5 milhões de vacinados.”

Enquanto a educação não puder dotar os cidadãos com o mínimo aceitável de conhecimento científico permanecerá a exploração e a exclusão de uma vasta maioria por alguns poucos manipuladores. A escola, é claro, deve ser a primeira frente de batalha. Este processo é lento mas é o único com solidez e sustentabilidade. Ele é lento porque a escola é uma instituição extremamente inerte e letárgica, demonstrando extrema dificuldade em assimilar novas tecnologias. É muito difícil promover aperfeiçoamentos nas escolas principalmente porque a formação de um bom quadro de professores é demorada e cara e nunca foi uma prioridade em nosso país.

A divulgação científica, promovida por jornais, rádios e revistas não especializadas é muito deficiente em nosso país. Dificilmente uma notícia importante em ciência de ponta pode ser compreendida, mesmo por especialistas da área, apenas com base no que é divulgado pelos principais jornais. Aparentemente os setores voltados para esta atividade na mídia recebem apoio e recursos muito (mas muito) inferiores àqueles destinados ao esporte, por exemplo. Mais recentemente têm surgido uma boa divulgação pela internet via blogs, podcasts, etc. O alcance destas mídias ainda é insuficiente.

Ciência é o oposto de religião?

Ciência, por definição, é uma busca sólida pelo conhecimento que busca confirmação teórica e empírica para seus achados. O método científico é relativamente novo, tendo se iniciado em torno da época em que viveu Galileu Galilei (1564-1642). Qualquer forma de se avançar sobre a ignorância, desde feita de forma sistemática, reprodutível e comprovada por qualquer pessoa que se disponha a fazê-lo, pode e deve ser incorporada ao método científico. A religião apresenta inúmeras afirmações que não podem ser comprovadas cientificamente. Ela se baseia na revelação e na fé, geralmente em torno da experiência de um indivíduo supostamente mais hábil ou com faculdades ou percepções superiores à da maioria das pessoa, ou em torno de tradições antigas e de origem remota ou esquecida. Estas afirmações terminam por se concretizar em livros sagrados e mitos que se transformam com o tempo em tradições que não podem ser questionadas. Se as afirmações do indivíduo “iluminado” ou da literatura sagrada não podem ser verificadas por qualquer pessoa então elas não podem ser chamadas de científicas. Uma afirmação sobre um fato que não pode ser reproduzido, confirmada ou descartada como falsa, não tem qualquer relevância na vida das pessoas nem no entendimento que fazemos do mundo.

Existe um Bule Voador entre a Terra e Marte?

Seguindo o argumento do matemático Bertrand Russel, imagine que eu afirme existir um bule celestial voador circulando em órbita elíptica entre as órbitas da Terra e de Marte. Ninguém poderá verificar sua existência pois ele é pequeno e não pode ser visto mesmo com o uso de telescópios poderosos. Evidentemente que ninguém de bom senso se empenhará na descoberta de tal objeto estranho. Russel usou este argumento para mostrar que o ônus da prova recai sempre sobre aquele que afirma alguma coisa.

Uma afirmação sobre algo intangível, não demonstrável nem percebido de modo inequívoco não é sequer uma hipótese científica e postular simplesmente a existência de tal coisa é, portanto, desnecessário e irracional. É uma forma de violação da navalha de Occam.

Se uma pessoa em estado meditativo vê algo extraordinário ela pode passar a defender ardentemente a existência daquilo que viu. Mas, como podemos saber se ela viu algo de fato, se sonhou, se alucinou ou simplesmente se iludiu? Ou, o que é pior, se está tentando deliberadamente enganar as pessoas para tirar de algum tipo de vantagem? A história das religiões exibe todos estes tipos de engano!

Deve-e ainda lembrar que afirmações extraordinárias exigem provas extraordinárias. Por exemplo, se um físico afirmar que existe uma quinta força, além das quatro conhecidas, ele terá que apresentar uma prova contundente, seja por meio de um experimento ou um fortíssimo argumento teórico que justifique pelo menos a consideração de sua argumentação.

E os universos paralelos?

Suponha ainda que alguém postule a existência de um universo paralelo que não interage de modo algum com o nosso. Se ele não nos afeta não pode ser encontrado e sua existência não pode ser comprovada, nem descartada. Este universo, mesmo se existir, não é objeto de investigação científica e … você não deve ser preocupar com ele. Mas, se alguém encontrar uma forma qualquer de interação entre os universos então ele passa a ser objeto de nossa atenção. Este é o caso de uma teoria especulativa proposta por Neil Turok e outros.

Vamos tomar a seguir dois exemplos de teorias científicas, o modelo cosmológico padrão, usualmente chamado de Big Bang, e a Teoria da Evolução das Espécies.