Dinâmica relativística


Até o momento discutimos o movimento de partículas livres e a transformação de seu movimento entre dois referenciais inerciais. Partículas livres descrevem retas em \(M_4\) e estas retas são levadas em outras retas por meio de transformações de Lorentz, já que elas são transformações lineares. Concluímos que, assim como acontece na mecânica clássica sob transformações de Galileu, a inércia não fica alterada de um referencial para outro. Qualquer desvio na linearidade do movimento de uma partícula deve ser atribuído à presença de alguma interação, uma força agindo sobre ela.

Para construir uma dinâmica devemos definir massa e momento sobre esta teoria. Na teoria Newtoniana a massa é uma constante de proporcionalidade entre a aceleração e a força. Na TRE tentamos seguir de perto, tanto quanto possível, as definições e conceitos da mecânica clássica, principalmente tendo em mente que a teoria relativística deve se reduzir à clássica no caso limite de baixas velocidades, em particular no que se refere às leis de conservação.

Construímos, na seção anterior, os quadrivetores
$$
u^{\mu} = \frac{dx^{\mu}}{d \tau} = \left( \gamma c, \gamma v \right), \text{} p^{\mu} = mu^{\mu} = \left( \gamma mc, \gamma mv \right) .
$$

Vimos que as partes espaciais destes quadrivetores se relacionam com a velocidade e o momento linear ordinários em 3 dimensões de forma simples,
$$
u_{\left( 4 \right)}^i = \gamma v_{\left( 3 \right)}^i ; p_{\left( 4
\right)}^i = \gamma p_{\left( 3 \right)}^i .
$$

Gostaríamos agora de explorar um pouco mais o significado do componente temporal \(p^0\) do quadrivetor momento, o que faremos na próxima seção, juntamente com o conceito de força generalizada.

Além dos vetores \(u^{\mu}\) e \(p^{\mu}\) , contruídos à partir da linha mundo \(x^{\mu} \left( \tau \right)\) , podemos definir um terceiro vetor
interessante
$$
K^{\mu} = m \frac{d^2 x^{\mu}}{d \tau} = \frac{dp^{\mu}}{d \tau} =
\frac{d}{d \tau} \left( \gamma mc, \gamma mv \right) .
$$

a chamada força generalizada de Minkowsky.\(\mathbb{}\) Denotaremos o componente espacial desta força de \(\vec{F}\) e portanto \(K = \left( K^0, \vec{F} \right)\). Em particular estamos interessados em descobrir as quantidades que se conservam nesta teoria.

Contraindo a força generalizada e a 4-velocidade podemos obter um esclarecimento sobre \ natureza do componente \(p^0\) do momento. Começamos
por notar que
$$
u^{\mu} K_{\mu} = mu^{\mu} \frac{du_{\mu}}{d \tau} = 0.
$$

A expressão acima se anula pois
$$
0 = \frac{d}{d \tau} \left( u_{\mu} u^{\mu} \right) = u_{\mu}
\frac{du^{\mu}}{d \tau} = \left( \frac{du_{\mu}}{d \tau} \right) u^{\mu} =
2 u_{\mu} \frac{du^{\mu}}{d \tau},
$$

já que \(u_{\mu} u^{\mu} = – c^2\) é uma constante. Observe também que usamos neste cálculo o fato de que \(\eta_{\mu \nu}\) é formado por constantes e portanto
$$
u^{\mu} \frac{du_{\mu}}{d \tau} = u^{\mu} \frac{d \left( \eta_{\mu \nu}
u^{\nu} \right)}{d \tau} = \eta_{\mu \nu} u^{\mu} \frac{du^{\nu}}{d \tau}
= u_{\mu} \frac{du^{\mu}}{d \tau} .
$$

Por outro lado
$$
0 = u^{\mu} K_{\mu} = – \left( u^0 K^0 \right) + u^i K_i = – \gamma cK^0 +
\gamma v^i K_i,
$$

de onde tiramos uma expressão para \(K^0\) ,
$$
K^0 = \frac{1}{c} v^i K_i = \frac{1}{c} \vec{v} . \vec{F} .
$$

Prosseguindo na analogia com o caso clássico relembramos a equação 2. Se \(T\) é a energia cinética de uma partícula então
$$
\frac{dT}{dt} = \vec{F} . \vec{v},
$$

o que sugere a adoção da seguinte notação: fazemos
$$
P^0 = \gamma mc = \frac{E}{c}
$$

e, por conseguinte,
$$
K^0 = \frac{1}{c} \frac{dE}{d \tau},
$$

onde \(E\) é a energia total da partícula, cujo sentido exploraremos em seguida. Usando estas definições temos

(7)

$$
E = \gamma mc^2 \text{e} \vec{p} = \gamma m \vec{v}, \label{emc2}
$$
generalizações da energia e do momento ordinário, podemos escrever o vetor quadri-momento como

(8)

$$
p^{\mu} = \left( \frac{E}{c}, \vec{p} \right) . \label{pmu}
$$
A norma deste vetor é invariante,
$$
p^{\mu} p_{\mu} = – \left( \frac{E}{c} \right)^2 + p^2 = – m^2 c^2,
$$

sendo \(p = \left| \vec{p} \right|\). Uma expressão útil pode ser obtida daí,
$$
E^2 = m^2 c^4 + p^2 c^2,
$$

uma expressão que associa a energia total da partícula com sua massa e velocidade. No referencial comóvel, onde \(\gamma = 1\) e \(p = 0\) temos a famosa equação de Einstein
$$
E = mc^2,
$$

válida, como já indicado, apenas no referencial da partícula. Outra relação interessante pode ser obtida para o caso de baixas velocidades, \(\beta \ll 1\). Neste caso usamos a expansão em séries de potências mantendo apenas os termos mais relevantes para escrever \(\gamma \approx \left( 1 + \beta^2 / 2 \right)\) e a equação 7 para a energia se torna
$$
E = \gamma mc^2 \approx \left( 1 + \frac{\beta^2}{2} \right) mc^2 = mc^2 +
\frac{1}{2} mv^2 .
$$

Para baixas velocidades a energia definida na equação 7 é a energia cinética ordinária mais um termo constante que denominaremos energia de repouso da partícula.

Diversos fenômenos observados confirmam a correção destas expressões. Um exemplo interessante é o da aniquilação de um elétron e um pósitron que resulta na completa aniquilação da massa de repouso das partículas iniciais resultando na emissão de fótons com massa de repouso nula que transportam toda a energia inicial do sistema. Reações atômicas que ocorrem dentro de reatores nucleares ou bombas atômicas se utilizam da fissão nuclear, a quebra de núcleos, para a liberação de grandes quantidades de energia. Os núcleos partidos possuem massa menor que a massa inicial, a diferença sendo liberada sob forma de energia transportada por radiação eletromagnética. Um processo análogo, porém inverso, ocorre no interior das estrelas onde núcleos leves, basicamente hidrogênio e hélio, são fundidos em núcleos mais pesados, resultando na liberação de energia.

Leis de conservação

Na Mecânica Clássica as simetrias do sistema considerado levam às leis de conservação. Um sistema homogêneo por translações de coordenadas exibe conservação do momento linear enquanto sistemas isotrópicos apresentam conservação do momento angular. Se um sistema é homogêneo por translaçãoes temporais então ele possue a energia total conservada.

Na Teoria da Relatividade Especial os escalares são as quantidades conservadas. Escalares são invariantes quando se troca de um sistema de coordenada estabelecido em um referencial inercial para outro sistema inercial. Em um referencial comóvel uma partícula tem o 4-momento
$$
p^{\mu} = \left( m_0 c, \vec{0} \right),
$$

onde \(m_0\) é a chamada massa de repouso da partícula, a massa medida por um observador no referencial comóvel. Calculamos \(p^{\prime \mu}\) obtido por meio de uma transformação de Lorentz sobre o momento anterior
$$
p^{\prime \mu} = \Lambda_{\hspace{0.75em} \alpha}^{\mu} p^{\alpha} = \left[
\begin{array}{cccc}
\gamma & \gamma v / c & \hspace{0.75em} 0 & \hspace{0.75em} 0\\
\gamma v / c & \gamma & \hspace{0.75em} 0 & \hspace{0.75em} 0\\
0 & 0 & \hspace{0.75em} 1 & \hspace{0.75em} 0\\
0 & 0 & \hspace{0.75em} 0 & \hspace{0.75em} 1
\end{array} \right] \left[ \begin{array}{c}
m_0 c\\
0\\
0\\
0
\end{array} \right] = \left[ \begin{array}{c}
\gamma m_0 c\\
\gamma m_0 v\\
0\\
0
\end{array} \right],
$$

ou seja,
$$
p^{\prime \mu} = \gamma \left( m_0 c, \hspace{0.25em} m_0 v
\hspace{0.25em}, 0 \hspace{0.25em}, 0 \right) .
$$

Se pretendemos manter a expressão para o momento como composto por energia e momento, \(p^{\mu} = \left( \frac{E}{C}, \hspace{0.75em} m \mathbf{v} \right)\) teremos então que definir
$$
m = \gamma m_0 = \frac{m_0}{\sqrt{1 – \beta^2}}
$$

que mostra a dilatação da massa para partículas em altas velocidades. Nenhum objeto com massa de repouso não nula pode ser acelerado até uma velocidade igual ou superior à velocidade da luz.

Podemos mostrar que, na TRE, o quadrivetor momento-energia é uma entidade conservada em um sistema de partículas. Definindo a variação total de momento-energia em um referencial como
$$
\Delta p^{\mu} = \left( \sum^n_a p_a^{\mu} \right)_{final} – \left(
\sum^n_a p_a^{\mu} \right)_{inicial}
$$

onde a soma é realizada sobre todas as partículas do sistema. Em outro referencial os momentos são transformados, para cada partícula, da seguinte forma
$$
p_a^{\prime \mu} = \Lambda_{\nu}^{\mu} p_a^{\nu}
$$

e, portanto, a variação total do momento-energia é
$$
\Delta p^{\prime \mu} = \left( \sum^n_a \Lambda_{\nu}^{\mu} p_a^{\nu}
\right)_{final} – \left( \sum^n_a \Lambda_{\nu}^{\mu} p_a^{\nu}
\right)_{inicial} = \Lambda_{\nu}^{\mu} \Delta p^{\nu} = \Delta p^{\mu} .
$$

Isto significa que se a variação total é nula em um referencial então ela será nula em qualquer referencial inercial. Observe que, para concluir isto, seria suficiente afirmar que a variação total, sendo composta por somas de vetores, é também um vetor. Se transformarmos este vetor para o referencial comóvel os componentes de \(\mathbf{p}\) são, como vimos na equação 8, a energia e o momento ordinário, ambos quantidades conservadas em qualquer reação ou interação de forma que a variação total do sistema será \(\Delta p^{\prime \mu} = 0\). Concluimos assim que
$$
\Delta p^{\mu} = 0
$$

em qualquer referencial inercial. Note, no entanto, que o momento e a energia não se conservam isoladamente.

Convenções e notação

O espaço-tempo é denominado \(M_4\) , o espaço de Minkowsky, cujos pontos são os eventos
$$
\mathbf{x =} \left( x^0, x^1, x^2, x^3 \right) \text{ ou, resumidamente, }
\mathbf{x =} \left\{ x^{\mu} \right\} .
$$

Vetores de \(M_4\) são representados por letras em negrito, \(\mathbf{x, u, p}\) enquanto vetores de \(I \hspace{-4pt} R^3\) são representados por meio de setas \(\vec{x} = \left( x, y, z \right)\) ou \(\vec{x} = \left\{ x^i \right\}\).Algumas vêzes é interessante separar o vetor em suas partes temporal e espacial fazendo, por exemplo,
$$
\mathbf{p} = \left( p^0, \vec{p} \right)
$$

Usamos índices gregos como índices do espaço-tempo,
$$
\alpha, \beta, \mu, \nu = 0, 1, 2, 3,
$$

enquanto índices latinos são puramente espaciais:
$$
i, j, k = 1, 2, 3.
$$

\(\left\{ \mathbf{\hat{e}}_{\mu} \right\}\) é a base canônica de \(M_4\), onde \(\mathbf{\hat{e}}_0\) é um vetor unitário puramente temporal e \(\mathbf{\hat{e}}_1 = \hat{\imath}, \mathbf{\hat{e}}_2 = \hat{\jmath}, \mathbf{\hat{e}}_3 = \hat{k}\).A métrica de Minkowsky é \(\eta_{\mu \nu} = \textit{diag} \left( -, +, +, + \right)\). A base canônica \(\left\{ \mathbf{\hat{e}}_{\mu} \right\}\) é ortonormal em relação à métrica de Minkowsky, ou seja

$$
\mathbf{\eta} \left( \mathbf{\hat{e}}_0, \mathbf{\hat{e}}_0 \right) = – 1,
$$

$$
\mathbf{\eta} \left( \mathbf{\hat{e}}_i, \mathbf{\hat{e}}_j \right) = \delta_{ij} .
$$

A convenção de Einstein para o somatório, onde índices repetidos são somados, é adotada em quase todo o texto. Com ela podemos escrever, por exemplo,

$$
ds^2 = \sum^3_{\mu, \nu = 0} dx^{\mu} dx^{\nu} \eta_{\mu \nu} = dx^{\mu}
dx^{\nu} \eta_{\mu \nu} .
$$

Bibliografia

  • Carrol, Sean, M.: Lecture Notes in General Relativity, gr-qc/9712019, Santa Barbara, 1997.
  • Lopes, J. L.: A Estrutura Quântica da Matéria, Editora UFRJ, Rio e Janeiro, 1993.
  • Misner, C., Thorne, K., Wheeler, A.: Gravitation, W. H. Freeman and Co., San Francisco, 1970.
  • Ohanian, H., Ruffini: Gravitation and Spacetime, W. W. Norton & Company, New York, 1994.
  • Ramond, P.: Field Theory, A Modern Primer, Addison-Wesley, New York, 1990.
  • Weinberg, S.: Gravitation and Cosmology, Principles and Applications of General Theory of Relativity, John Wiley and Sons, New York, 1971.

 

Início: TRE

A estrutura do espaço-tempo

Um evento

O espaço onde os fenômenos ocorrem, segundo a TRE, é um espaço vetorial de quatro dimensões que denotaremos por \(M_4\), o espaço de Minkowsky (que é similar ao \(R^4\), mas não euclidiano, como veremos). Cada ponto deste espaço é denominado um evento e será marcado com as coordenadas \((ct, \hspace{0.25em} x, \hspace{0.25em} y, \hspace{0.25em} z)\) que descrevem quando e onde o evento ocorreu. Cada ponto, portanto, pode ser associado a um quadrivetor \(\mathbf{x} = \left\{ x^{\mu} \right\} = \left( ct, \hspace{0.25em} x, \hspace{0.25em} y, \hspace{0.25em} z \right)\).

Com esta definição podemos reescrever a separação infinitesimal na forma
$$
ds^2 = – c^2 dt^2 + dx^2 + dy^2 + dz^2 = – \left( dx^0 \right)^2 + \left(
dx^1 \right)^2 + \left( dx^2 \right)^2 + \left( dx^3 \right)^2 = \eta_{\mu
\nu} dx^{\mu} dx^{\nu}
$$

onde escrevemos

(6)

$$
\eta_{\mu \nu} = \left( \begin{array}{cccc}
– 1 & 0 & 0 & 0\\
\hspace{0.75em} 0 & 1 & 0 & 0\\
\hspace{0.75em} 0 & 0 & 1 & 0\\
\hspace{0.75em} 0 & 0 & 0 & 1
\end{array} \right) . \label{etaMikowsky}
$$
Por construção as transformações de Lorentz deixam invariante este intervalo. Estas transformações, dadas pelas equações 5, podem ser escrita da seguinte forma:
$$
x^{\prime 0} = \gamma \left( x^0 – \frac{v}{c} x^1 \right),
\hspace{1.5em} x^{\prime 2} = x^2
$$

$$
x^{\prime 1} = \gamma \left( x^1 – \frac{v}{c} x^0 \right), \hspace{1.5em} x^{\prime 3} = x^3 .
$$

Em forma matricial temos
$$
\left[ \begin{array}{c}
x^{\prime 0}\\
x^{\prime 1}\\
x^{\prime 2}\\
x^{\prime 3}
\end{array} \right] = \left[ \begin{array}{cccc}
\gamma & – \gamma v / c & \hspace{0.75em} 0 & \hspace{0.75em} 0\\
– \gamma v / c & \gamma & \hspace{0.75em} 0 & \hspace{0.75em} 0\\
0 & 0 & \hspace{0.75em} 1 & \hspace{0.75em} 0\\
0 & 0 & \hspace{0.75em} 0 & \hspace{0.75em} 1
\end{array} \right] \left[ \begin{array}{c}
x^0\\
x^1\\
x^2\\
x^3
\end{array} \right]
$$

ou ainda, em forma compacta,
$$
x^{\prime \mu} = \Lambda_{\nu}^{\mu} x^{\nu}, \hspace{0.75em} \mu = 0, 1, 2, 3;
$$

onde a soma sob o índice \(\nu\) está subentendida. A invariância do intervalo, \(ds^{\prime 2} = ds^2\) , implica em
$$
\eta_{\mu \nu} dx^{\prime \mu} dx^{\prime \nu} = \eta_{\mu \nu}
\Lambda_{\hspace{0.3em} \alpha}^{\mu} dx^{\alpha} \Lambda_{\hspace{0.3em}
\beta}^{\nu} dx^{\beta} = \eta_{\mu \nu} dx^{\mu} dx^{\nu}
$$

e, por conseguinte, vale
$$
\eta_{\mu \nu} \Lambda_{\hspace{0.3em} \alpha}^{\mu}
\Lambda_{\hspace{0.3em} \beta}^{\nu} = \eta_{\alpha \beta} .
$$

A exigência da invariância entre separações de eventos define uma métrica \(\eta\) no espaço-tempo, a chamada métrica de Minkowsky. Tomando \(\mathbf{x}\) e \(\mathbf{y}\) como vetores de \(M_4\) definimos uma aplicação bilinear e simétrica satisfazendo

  • \(\mathbf{\eta} \left( \mathbf{x}, \mathbf{x} \right) = \left|
    \mathbf{x} \right|^2\) , onde \(\left| \mathbf{x} \right|\) é a norma ou comprimento de \(\mathbf{x}\)
  • \(\mathbf{\eta} \left( \mathbf{x}, \mathbf{y} \right) = \mathbf{\eta}
    \left( \mathbf{y, x} \right)\)
  • \(\eta \left( \mathbf{x}, \mathbf{x} \right) \hspace{0.75em} \left\{
    \begin{array}{c}
    = 0\\
    > 0\\
    < 0
    \end{array} \right. \begin{array}{c}
    \hspace{0.75em} \text{separação tipo luz,}\\
    \hspace{0.75em} \text{separação tipo espaço,}\\
    \hspace{0.75em} \text{separação tipo tempo.}
    \end{array}\)
Tipo de vetores

Observe, no entanto, que ela não é positiva como a métrica euclidiana, definida pelo produto interno ou produto escalar. Dizemos que \(M_4\) é um espaço pseudo-euclidiano.

Usando como base de \(M_4\) os vetores \(\left\{ \mathbf{\hat{e}}_{\mu} \right\} = \left\{ \hat{t}, \hat{\imath}, \hat{\jmath},
\hat{k} \right\}\) podemos obter os componentes da métrica
$$
\eta_{\mu \nu} = \mathbf{\eta} \left( \mathbf{\hat{e}}_{\mu} \mathbf{,
\hat{e}_{\nu}} \right) = \left\{
\begin{array}{cl}
\mathbf{\eta} \left( \mathbf{\hat{e}}_0 \mathbf{, \hat{e}_0} \right) & =
– 1\\
\mathbf{\eta} \left( \mathbf{\hat{e}}_i \mathbf{, \hat{e}}_j \right) & =
\delta_{ij}\\
\mathbf{\eta} \left( \mathbf{\hat{e}}_0 \mathbf{, \hat{e}}_i \right) & =
0.
\end{array} \right. .
$$

São estes os componentes já exibidos na equação (5).

Observe que dois eventos ligados por um feixe de luz, como a emissão e captação de um fóton, por exemplo, estão separados por uma distância nula, ou seja, um vetor não nulo pode ter comprimento zero. Para ver isto fazemos
$$
ds^2 = – c^2 dt^2 + dx^2 + dy^2 + dz^2 =
$$

$$
= dt^2 \left[ – c^2 + \frac{dx^2}{dt^2} + \frac{dy^2}{dt^2} +
\frac{dz^2}{dt^2} \right] = dt^2 \left[ – c^2 + v^2 \right] = 0
$$

já que para o fóton \(v = c. \hspace{0.75em}\) Observe ainda que um vetor pode ter norma negativa ou, ainda, um vetor não nulo pode ter norma nula.
Este é o caso de vetores sobre o cone de luz
$$
– c^2 t^2 + x^2 + y^2 + z^2 = 0,
$$

Figura 6: Cone de luz

ilustrado na figura 6. A partir de um evento colocado na origem \(O\), o espaço fica dividido em três regiões distintas: o futuro e o passado de \(O\) , dentro do cone, e uma região sem conexão causal com \(O\).

O passado é composto por pontos onde ocorreram eventos que podem influenciar o evento em \(O\) por meio de alguma interação causal. Por outro lado \(O\) pode influenciar todos os eventos dentro do cone do futuro. Nenhum evento fora do cone pode afetar \(O\) nem ser por ele afetado pois não podem estar conectados por nenhuma interação com velocidade menor ou igual à da luz. A velocidade da luz é uma velocidade limite para a transmissão de qualquer informação dentro do panorama de Relatividade Especial.

Vetores e tensores de M4

(8) Com frequência usaremos um abuso de linguagem, comum na literatura, dizendo que o vetor \(\mathbf{x}\) é simplesmente \(x^{\mu}\).

O espaço-tempo é um espaço vetorial de quatro dimensões onde a métrica ou produto interno foi definido de modo a manter invariante a separação entre eventos. Se \(\mathbf{x} \in M_4\) então \(\mathbf{x =} x^{\mu} \mathbf{\hat{e}}_{\mu}\). Usaremos a notação(8)
$$
\mathbf{x =} \left( x^0, x^1, x^2, x^3 \right) \text{ ou, abreviadamente, } \mathbf{x =} \left\{ x^{\mu} \right\} .
$$

Observe que \(\mathbf{x}\) é um objeto geométrico que nada tem a ver com o sistema de coordenadas escolhido enquanto enquanto os componentes \(x^{\mu}\) dependem da escolha da base \(\left\{ \mathbf{\hat{e}}_{\mu} \right\}\) e, portanto, do sistema de coordenadas utilzado. De acordo com a definição da norma temos
$$
\left| \mathbf{x} \right|^2 = \mathbf{\eta} \left( \mathbf{x}, \mathbf{x}
\right) = \mathbf{\eta} \left( x^{\mu} \mathbf{\hat{e}}_{\mu}, x^{\nu}
\mathbf{\hat{e}}_{\nu} \right) = x^{\mu} x^{\nu} \mathbf{\eta} \left(
\mathbf{\hat{e}}_{\mu}, \mathbf{\hat{e}}_{\nu} \right) = x^{\mu} x^{\nu}
\eta_{\mu \nu}
$$

e, portanto, \(\mathbf{x}\) tem comprimento invariante sob transformações de Lorentz. Diremos que \(x^{\mu}\) são os componentes contravariantes do vetor enquanto
$$
x_{\mu} = \eta_{\mu \nu} x^{\nu}
$$

são os componentes covariantes. Observe que \(x_0 = \eta_{0 \nu} x^{\nu} = – x^0\) e que, com esta notação,
$$
\left| \mathbf{x} \right|^2 = x^{\mu} x_{\mu} = – \left( x^0 \right)^2 +
x^i x_i = – \left( x^0 \right)^2 + \vec{x} \cdot \vec{x} .
$$

Se definirmos como \(\eta^{\mu \nu}\) como os componentes da matriz inversa de \(\mathbf{\eta,}\) de forma que
$$
\mathbf{\eta}^{- 1} \mathbf{\eta = I} \Rightarrow \eta^{\mu \alpha}
\eta_{\alpha \nu} = \delta_{\nu}^{\mu}
$$

então podemos retornar aos componentes contravariantes fazendo
$$
x^{\mu} = \eta^{\mu \nu} x_{\nu} .
$$

Definiremos como vetores de \(M_4\) todas as quantidades que se transformam da mesma forma que \(\mathbf{x.}\) O comprimento de todos os vetores, assim como o produto interno de dois vetores
$$
\mathbf{\eta} \left( \mathbf{u}, \mathbf{v} \right) = \mathbf{\eta} \left(
u^{\mu} \mathbf{\hat{e}}_{\mu}, v^{\nu} \mathbf{\hat{e}}_{\nu} \right) =
u^{\mu} v^{\nu} \mathbf{\eta} \left( \mathbf{\hat{e}}_{\mu},
\mathbf{\hat{e}}_{\nu} \right) = u^{\mu} v^{\nu} \eta_{\mu \nu} = u^{\mu}
v_{\mu},
$$

denominado a contração de \(\mathbf{u}\) e\(\mathbf{v,}\) são escalares, independentes do sistema de referência. Em particular será útil definir os vetores velocidade e momento, o que faremos a seguir.

Uma trajetória em \(M_4\) é uma curva parametrizada também chamada de linha mundo da partícula,
$$
P \left( \tau \right) = \mathbf{x} \left( \tau \right) = x^{\mu} \left(
\tau \right) \mathbf{\hat{e}}_{\mu},
$$

onde \(\tau\) é um parâmetro qualquer embora, com frequência, seja conveniente usar o tempo próprio. Como \(\mathbf{x}\) é um vetor de \(M_4\) então
$$
\mathbf{u =} \frac{d \mathbf{x}}{d \tau} = \frac{dx^{\mu}}{d \tau}
\mathbf{\hat{e}}_{\mu} = u^{\mu} \mathbf{\hat{e}}_{\mu}
$$

onde definimos
$$
u^{\mu} = \frac{dx^{\mu}}{d \tau} .
$$

\(\mathbf{u,}\) a quadri-velocidade, é também um vetor, tangente à linha mundo. Seus componentes são
$$
u^0 = \frac{dx^0}{d \tau} = \frac{cdt}{d \tau} = \frac{c}{\sqrt{1 –
\beta^2}},
$$

$$
u^i = \frac{dx^i}{d \tau} = \frac{dt}{d \tau} \frac{dx^i}{dt} =
\frac{v^i}{\sqrt{1 – \beta^2}} .
$$

Portanto
$$
\mathbf{u} = \left( \frac{c}{\sqrt{1 – \beta^2}}, \frac{v_x}{\sqrt{1 –
\beta^2}}, \frac{v_y}{\sqrt{1 – \beta^2}}, \frac{v_z}{\sqrt{1 – \beta^2}}
\right) = \gamma \left( c, \hspace{0.75em} \vec{v} \right) .
$$

A partir desta velocidade construimos outro vetor paralelo à 4-velocidade, o 4-momento
$$
\mathbf{p =} m \mathbf{u} = mu^{\mu} \mathbf{\hat{e}}_{\mu},
$$

onde \(m\) é a massa da partícula. Seus componentes são
$$
\mathbf{p} = \left( \frac{mc}{\sqrt{1 – \beta^2}}, \frac{m \vec{v}}{\sqrt{1
– \beta^2}} \right) = m \gamma \left( c, \sim \vec{v} \right) .
$$

No referencial comóvel \(\vec{v} = 0\) e \(\gamma = 1\) e, portanto, estes vetores assumem as formas particulares
$$
u^{\mu} = \left( c, \vec{0} \right) \hspace{1.5em} \text{ e } \hspace{1.5em} p^{\mu} = \left( mc, \vec{0}
\right) .
$$

Como se verá \(\mathbf{p}\) é uma constante do movimento enquanto o momento linear tridimensional \(\vec{p} = m \vec{v} \mathbf{,}\) que é uma quantidade conservada classicamente, não se conserva na TRE. As normas de \(\mathbf{u}\) e\(\mathbf{p,}\) em qualquer referencial inercial, são
$$
\left| \mathbf{u} \right|^2 \mathbf{=} u^{\mu} u_{\mu} = – \left( u^0
\right)^2 + u^i u_i = \gamma^2 \left( – c^2 + v^2 \right) = \frac{- c^2 +
v^2}{1 – \beta^2} = – c^2 ;
$$

$$
\left| \mathbf{p} \right|^2 = p^{\mu} p_{\mu} = m^2 u^{\mu} u_{\mu} = – m^2
c^2 .
$$

Tensores do espaço-tempo O mais simples dos tensores é um escalar, um tensor de ordem zero. Escalares são invariantes sob transformações de Lorentz, como ocorre com a separação de eventos \(ds^2\) , com o tempo próprio \(\tau\) , ou com a norma do vetor quadrivelocidade, \(\left| \mathbf{u} \right|^2 = – c^2\).

Um vetor é um tensor de ordem um, um objeto de quatro componentes que se transforme como \(x^{\mu}\) :
$$
A^{\prime \mu} = \Lambda_{\nu}^{\mu} A^{\nu} .
$$

O vetor quadri-velocidade e o quadri-momento são exemplos. Um tensor mais geral, de ordem \(r\) é um objeto com \(4^r\) componentes que se transforma deacordo com
$$
A^{\prime \alpha \beta \ldots \gamma} = \Lambda_{\mu}^{\alpha}
\Lambda_{\nu}^{\beta} \ldots \Lambda_{\rho}^{\gamma} A^{\mu \nu \ldots
\rho} .
$$

Um exemplo é o tensor formada pelo produto externo \(x^{\mu} x^{\nu}\).

 

Dinâmica Relativística

As Transformações de Lorentz


A teoria da relatividade afirma que observadores em movimento relativo concordam quanto à forma das equações que descrevem os fenômenos observados. é necessário então descobrir a lei de transformação que leva à descrição feita em um referencial para o outro. Matematicamente esta é uma transformação particular de coordenadas, que passamos a explorar.

Suponhamos que dois observadores em movimento relativo analisam um pulso de luz. Cada observador está em repouso nos referenciais \(S\) e \(S^{\prime}\) com origens respectivamente em \(O\) e \(O^{\prime} . \hspace{0.75em} S^{\prime}\) se move com velocidade \(v\) no direção do eixo \(Ox\) em relação a \(S\). Como a velocidade da luz é a mesma em todos os referenciais inerciais, o que foi demonstrado pelo experimento de Michelson-Morley, os observadores devem ver o pulso de luz se afastando de forma esférica. Se isto não fosse verdade um dos observadores seria capaz de determinar seu movimento relativo em relação ao outro, o que contradiz o princípio da relatividade. Consideremos ainda dois eventos infinitesimalmente próximos ligados por este raio de luz. Para os observadores em \(S\) e \(S^{\prime}\) estes eventos estarão separados por \(ds^{\prime}\) e \(ds^{\prime,}\) respectivamente dados por
$$
ds^2 = – dt^2 + dx^2 + dy^2 + dz^2,
$$

$$
ds^{\prime 2} = – dt^{\prime 2} + dx^{\prime 2} + dy^{\prime 2} +
dz^{\prime 2} .
$$

(5) Na verdade esta conclusão é uma inferência. Experimentalmente não é possível
observar o movimento de uma partícula em um ambiente totalmente livre de campos de força.

(6) Transformação lineares levam retas em retas.

Devido à invariância da velocidade da luz estas separação deverão ser iguais, \(ds^{\prime 2} = ds^2\). Observamos que a transformação de Galileu não deixa invariante uma frente de onda de luz que satisfaz, no referencial em repouso com relação à fonte, a equação \(x^2 + y^2 + z^2 = c^2 t^2\). Sabemos da observação(5) que partículas livres seguem trajetórias que são linhas retas e isto deve ser preservado em qualquer referencial inercial. Procuramos então uma transformação linear(6) na forma de
$$
\begin{array}{cl}
x^{\prime} & = \alpha x + \mu t\\
y^{\prime} & = y\\
z^{\prime} & = z\\
t^{\prime} & = \lambda x + \delta t,
\end{array}
$$

onde \(\alpha, \hspace{0.75em} \beta, \hspace{0.75em} \gamma \hspace{0.75em} \text{e} \hspace{0.75em} \delta \hspace{0.75em} \) são constantes a determinar. Sem perda de generalidade podemos colocar o observador fixo na origem de \(S^{\prime}\) e, portanto, sua coordenada \(x^{\prime} = 0\) enquanto \(x\) será sua coordenada do ponto de vista do observador em \(S\). Como consequência
$$
x^{\prime} = \alpha x + \mu t = 0 \Rightarrow \frac{x}{t} = v = –
\frac{\mu}{\alpha} .
$$

Já um observador fixo na origem de \(S\) \(\left( x = 0 \right)\) terá em \( S^{\prime} \) as coordenadas
$$
x^{\prime} = – \alpha vt ; \hspace{0.75em} t^{\prime} = \delta t.
$$

O referencial \(S\) se afasta de \(S^{\prime}\) com velocidade \(– v\) e
$$
\frac{x^{\prime}}{t^{\prime}} = – v = – \frac{\alpha}{\delta} v
$$

e, portanto \(\alpha = \delta\). Resta descobrir \(\alpha\) e \(\gamma\) na transformação
$$
\begin{array}{cl}
x^{\prime} & = \alpha \left( x – vt \right)\\
t^{\prime} & = \lambda x + \alpha t.
\end{array}
$$

Para o observador em \(S^{\prime}\) a frente de onda será vista como
$$
x^{\prime 2} + y^{\prime 2} + z^{\prime 2} = c^2 t^{\prime 2} \Rightarrow
\alpha^2 \left( x – vt \right)^2 + y^2 + z^2 = c^2 \left( \lambda x +
\alpha t \right)^2 \Rightarrow
$$

$$
x^2 \left( \alpha^2 – \lambda^2 c^2 \right) + y^2 + z^2 – 2 xt \left(
\alpha^2 v + c^2 \alpha \lambda \right) = c^2 t^2 \left( \alpha^2 –
\alpha^2 v^2 / c^2 \right) .
$$

Para igualarmos esta expressão à \(x^2 + y^2 + z^2 = c^2 t^2\) devemos ter
$$
\alpha^2 – \lambda^2 c^2 = 1 ; \hspace{0.75em} \hspace{0.75em}
\hspace{0.75em} \hspace{0.75em} \alpha^2 – \alpha^2 v^2 / c^2 ;
\hspace{0.75em} \hspace{0.75em} \hspace{0.75em} \hspace{0.75em} \alpha^2 v
+ c^2 \alpha \lambda = 0,
$$

cuja solução é
$$
\alpha = \frac{1}{\sqrt{1 – \left( v / c \right)^2}}, \hspace{0.75em}
\hspace{0.75em} \hspace{0.75em} \hspace{0.75em} \lambda = \frac{- v /
c^2}{\sqrt{1 – \left( v / c \right)^2}} .
$$

As transformações de coordenadas que deixam invariante a frente de onda luminosa são as chamadas transformações de Lorentz e são dadas por

(5)

$$
x^{\prime} = \frac{x – vt}{\sqrt{1 – \left( v / c \right)^2}},
\hspace{0.75em} \hspace{0.75em} \hspace{0.75em} \hspace{0.75em}
\hspace{0.75em} \hspace{0.75em} \hspace{0.75em} \hspace{0.75em}
\hspace{0.75em} \hspace{0.75em} \hspace{0.75em} y^{\prime} = y
$$

$$
t^{\prime} = \frac{t – vx / c^2}{\sqrt{1 – \left( v / c \right)^2}},
\hspace{0.75em} \hspace{0.75em} \hspace{0.75em} \hspace{0.75em}
\hspace{0.75em} \hspace{0.75em} \hspace{0.75em} \hspace{0.75em}
\hspace{0.75em} \hspace{0.75em} \hspace{0.75em} \hspace{0.75em} z^{\prime} =
z. \label{TransfLorentz}
$$
As transformações inversas, para se transformar a descrição do referencial \(S^{\prime}\) para \(S\) , pode ser obtida simplesmente lembrando que \(S\) se move com velocidade \(– v\) em relação a \(S^{\prime}\). Portanto
$$
x = \frac{x^{\prime} + vt^{\prime}}{\sqrt{1 – \left( v / c \right)^2}},
\hspace{0.75em} \hspace{0.75em} \hspace{0.75em} \hspace{0.75em}
\hspace{0.75em} \hspace{0.75em} \hspace{0.75em} \hspace{0.75em}
\hspace{0.75em} \hspace{0.75em} \hspace{0.75em} y = y^{\prime}
$$

$$
t = \frac{t^{\prime} + vx^{\prime} / c^2}{\sqrt{1 – \left( v / c
\right)^2}}, \hspace{0.75em} \hspace{0.75em} \hspace{0.75em}
\hspace{0.75em} \hspace{0.75em} \hspace{0.75em} \hspace{0.75em}
\hspace{0.75em} \hspace{0.75em} \hspace{0.75em} \hspace{0.75em}
\hspace{0.75em} z = z^{\prime} .
$$

Revisando a contração espacial e dilatação temporal

Uma vez obtidas as transformações de Lorentz os efeitos da contração espacial e dilatação \ temporal se tornam mais fáceis de serem verificados. Suponha por exemplo, que queremos medir o comprimento de uma régua que tem uma ponta em \(x_1\) e a outra em \(x_2\). No referencial de repouso seu comprimento será
$$
L_0 = x_2 – x_1 .
$$

Para um observador em movimento, com velocidade \(v\) ao longo do comprimento da régua, seu comprimento será
$$
L = x_2^{\prime} \left( t^{\prime} \right) – x_1^{\prime} \left( t^{\prime}
\right) .
$$

Observe que as medidas de cada ponto devem ser feitas no mesmo instante, \(t^{\prime}\). De acordo com a transformação de Lorentz temos
$$
x^{\prime} = \gamma \left( x – vt \right) \Rightarrow x = \gamma \left(
x^{\prime} + vt^{\prime} \right)
$$

e, portanto,
$$
\begin{array}{cl}
x_2 = & \gamma \left( x_2^{\prime} + vt^{\prime} \right)\\
x_1 = & \gamma \left( x_1^{\prime} + vt^{\prime} \right)
\end{array} .
$$

Dai podemos concluir que o observador em movimento mede um comprimento \(L\) para a régua menor que o medido no referencial de repouso:
$$
L_0 = x_2 – x_1 = \gamma \left( x_2^{\prime} – x_1^{\prime} \right) =
\gamma L.
$$

Invariância da equação de onda

Um exercício interessante pode ser feito para mostrar que a equação a equação de onda para a luz é invariante sob a transformação de Lorentz. Das equações de Maxwell se pode deduzir que a luz obedece a equação
$$
\left[ \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} +
\frac{\partial^2}{\partial z^2} – \frac{1}{c^2} \frac{\partial^2}{\partial
t^2} \right] \Phi \left( x, y, z, t \right) = 0,
$$

que é a equação de onda se propagando com velocidade \(c\). Em um referencial em movimento \(S^{\prime}\) teremos
$$
\left[ \frac{\partial^2}{\partial x^{\prime 2}} +
\frac{\partial^2}{\partial y^{\prime 2}} + \frac{\partial^2}{\partial
z^{\prime 2}} – \frac{1}{c^2} \frac{\partial^2}{\partial t^{\prime 2}}
\right] \Phi \left( x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime} \right)
= 0
$$

sendo que \(\Phi\) é um escalar, satisfazendo portanto \(\Phi \left( x, y, z, t \right) = \Phi \left( x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime} \right)\). Para simplificar as operações vamos considerar o caso de uma onda plana, com propagação na direção de \(x\) apenas, descrita por \(\Phi \left(x, t \right)\). Para relacionar as derivadas temos
$$
x^{\prime} = \gamma \left( x – vt \right) ; \hspace{0.75em} \hspace{0.75em}
\hspace{0.75em} \hspace{0.75em} t^{\prime} = \gamma \left( t – vx / c^2
\right),
$$

e, portanto, as derivadas espaciais e temporal em termos das novas
variáveis:
$$
\frac{\partial \Phi}{\partial x} = \frac{\partial \Phi}{\partial
x^{\prime}} \frac{\partial x^{\prime}}{\partial x} + \frac{\partial
\Phi}{\partial t^{\prime}} \frac{\partial t^{\prime}}{\partial x} = \gamma
\frac{\partial \Phi}{\partial x^{\prime}} – \frac{\gamma v}{c^2}
\frac{\partial \Phi}{\partial t^{\prime}},
$$

$$
\frac{\partial \Phi}{\partial t} = \frac{\partial \Phi}{\partial
x^{\prime}} \frac{\partial x^{\prime}}{\partial t} + \frac{\partial
\Phi}{\partial t^{\prime}} \frac{\partial t^{\prime}}{\partial t} = –
\gamma v \frac{\partial \Phi}{\partial x^{\prime}} + \gamma \frac{\partial
\Phi}{\partial t^{\prime}} .
$$

Os operadores derivadas se relacionam, nos dois sistemas de coordenadas, da seguinte forma:
$$
\frac{\partial}{\partial x} = \gamma \frac{\partial}{\partial x^{\prime}} –
\frac{\gamma v}{c^2} \frac{\partial}{\partial t^{\prime}} ;
\hspace{0.75em} \hspace{0.75em} \hspace{0.75em} \frac{\partial}{\partial t}
= – \gamma v \frac{\partial}{\partial x^{\prime}} + \gamma
\frac{\partial}{\partial t^{\prime}} .
$$

Podemos construir a regra de transformação para as derivadas segundas,
$$
\frac{\partial^2}{\partial x^2} = \frac{\partial}{\partial x} \left(
\frac{\partial}{\partial x} \right) = \left( \gamma
\frac{\partial}{\partial x^{\prime}} – \gamma \frac{v}{c^2}
\frac{\partial}{\partial t^{\prime}} \right) \left( \gamma
\frac{\partial}{\partial x^{\prime}} – \gamma \frac{v}{c^2}
\frac{\partial}{\partial t^{\prime}} \right) =
$$

$$
= \gamma^2 \left( \frac{\partial^2}{\partial x^{\prime 2}} – \frac{2
v}{c^2} \frac{\partial^2}{\partial x^{\prime} \partial t^{\prime}} +
\frac{v^2}{c^4} \frac{\partial^2}{\partial t^{\prime 2}} \right) ;
$$

$$
\frac{\partial^2}{\partial t^2} = \frac{\partial}{\partial t} \left(
\frac{\partial}{\partial t} \right) = \left( – \gamma v
\frac{\partial}{\partial x^{\prime}} + \gamma \frac{\partial}{\partial
t^{\prime}} \right) \left( – \gamma v \frac{\partial}{\partial x^{\prime}}
+ \gamma \frac{\partial}{\partial t^{\prime}} \right) =
$$

$$
= \gamma^2 \left( v^2 \frac{\partial^2}{\partial x^{\prime 2}} – 2 v
\frac{\partial^2}{\partial x^{\prime} \partial t^{\prime}} +
\frac{\partial^2}{\partial t^{\prime 2}} \right) .
$$

Escrevendo a equação de onda no referencial em movimento temos
$$
\left[ \frac{\partial^2}{\partial x^2} – \frac{1}{c^2}
\frac{\partial^2}{\partial t^2} \right] \Phi = 0 \Rightarrow
$$

$$
\gamma^2 \left[ \frac{\partial^2 \Phi}{\partial x^{\prime 2}} \left( 1 –
\frac{v^2}{c^2} \right) – \frac{1}{c^2} \frac{\partial^2 \Phi}{\partial
t^{\prime 2}} \left( 1 – \frac{v^2}{c^2} \right) \right] = 0,
$$

ou, simplesmente,
$$
\frac{\partial^2 \Phi}{\partial x^{\prime 2}} – \frac{1}{c^2}
\frac{\partial^2 \Phi}{\partial t^{\prime 2}} = 0,
$$

o que mostra a invariância da equação de onda sob transformações de Lorentz. De fato se pode mostrar que as equações de Maxwell são invariantes sob estas transformações. Lorentz deduziu corretamente a formas destas transformações à partir das equações do eletromagnetismo, mas não foi capaz de aplicá-las ao uso da mecânica, como fez Einstein.

Transformação de velocidades

A partir das transformações de Lorentz
$$
x^{\prime} = \gamma \left( x – vt \right), \hspace{0.75em} \hspace{0.75em}
\hspace{0.75em} \hspace{0.75em} y^{\prime} = y, \hspace{0.75em}
\hspace{0.75em} \hspace{0.75em} \hspace{0.75em} z^{\prime} = z,
\hspace{0.75em} \hspace{0.75em} \hspace{0.75em} \hspace{0.75em} t^{\prime}
= \gamma \left( t – vx / c^2 \right),
$$

podemos obter uma expressão para a relação entre velocidades nos dois referenciais inerciais. Denotamos por
$$
u_x = dx / dt \text{e} \hspace{0.75em} \hspace{0.75em} \hspace{0.75em}
u_x^{\prime} = dx^{\prime} / dt^{\prime}
$$

as velocidades em \(S\) e \(S^{\prime}\) respectivamente e calculamos as diferenciais
$$
dx^{\prime} = \gamma \left( dx – vdt \right), \hspace{0.75em}
\hspace{0.75em} \hspace{0.75em} \hspace{0.75em} dy^{\prime} = dy,
\hspace{0.75em} \hspace{0.75em} \hspace{0.75em} \hspace{0.75em} dz^{\prime}
= dz, \hspace{0.75em} \hspace{0.75em} \hspace{0.75em} \hspace{0.75em}
dt^{\prime} = \gamma \left( dt – v / c^2 dx \right) .
$$

O componente em \(x\) da velocidade é
$$
u_x^{\prime} = \frac{dx^{\prime}}{dt^{\prime}} = \frac{dx – vdt}{dt – v /
c^2 dx} = \frac{u_x – v}{1 – v / c^2 u_x} .
$$

Na última igualdade dividimos numerador e denominador por \(dt\). Da mesma forma podemos encontrar o componente \(y\) ,
$$
u_y^{\prime} = \frac{dy^{\prime}}{dt^{\prime}} = \frac{dy}{\gamma \left( dt
– v / c^2 dx \right)} = \frac{u_y}{\gamma \left( 1 – v / c^2 u_x \right)},
$$

e o componente \(z\) ,
$$
u_z^{\prime} = \frac{dz^{\prime}}{dt^{\prime}} = \frac{dz}{\gamma \left( dt
– v / c^2 dx \right)} = \frac{u_z}{\gamma \left( 1 – v / c^2 u_x \right)} .
$$

Isto mostra que os vetores velocidades não se somam da mesma forma que na mecânica de Newton.

Exemplo: Uma partícula A se move com velocidade \(v_A = 0, 5 c\) no referencial do laboratório, e emite uma partícula B com velocidade \(v_B = 0, 5 c\) em relação à sua própria velocidade. Qual a velocidade \(W\) da partícula B no laboratório? O laboratorio tem velocidade \(– v_A\) em relação a partícula:
$$
W = \frac{v_A + v_B}{1 + v_A v_B / c^2} = \frac{c}{1 + \left( 0, 5
\right)^2} = 0, 8 c.
$$

Tempo Próprio

Vimos que as medidas do tempo variam com a velocidade do observador que analisa o fenômeno sob consideração. O tempo próprio \(\tau\) de uma partícula é definido como o tempo medido por um observador que se move junto com a partícula, no chamado referencial comóvel. Neste caso \(dx = dy = dz = 0\) para o este observador. Como a separação em \(M_4\) é invariante temos, em comparação com um outro observador qualquer, temos que
$$
ds^2 = – c^2 d \tau^2 = – c^2 dt^2 + dx^2 + dy^2 + dz^2,
$$

ou seja,
$$
d \tau^2 = dt^2 – \frac{1}{c^2} \left( dx^2 – dy^2 – dz^2 \right) = \left(
1 – \frac{v^2}{c^2} \right) dt^2,
$$

onde foi feita a substituição
$$
v^2 = \left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 +
\left( \frac{dz}{dt} \right)^2,
$$

sendo \(v\) a velocidade relativa entre os dois referenciais e, por conseguinte, a velocida da partícula estudada pelo observador não comóvel. Podemos ainda escrever
$$
d \tau = dt \sqrt{1 – \left( v / c \right)^2} = dt \sqrt{1 – \beta^2}
$$

e, como consequência
$$
\frac{dt}{d \tau} = \frac{1}{\sqrt{1 – \beta^2}} .
$$

O tempo próprio é um escalar
$$
d \tau^2 = \frac{- 1}{c^2} ds^2
$$

e portanto invariante sob mudanças de coordenadas que satisfazem as transformações de Lorentz. Por este motivo é um bom candidato a ser usado como parâmetro nas equações do movimento.

 

A estrutura do espaço-tempo

Consequências da invariância da velocidade da luz


Como veremos, a simples exigência de que a velocidade da luz seja a mesma quando medida por um observador em um referencial inercial qualquer implica em profundas consequências tanto para o entendimento da mecânica quanto da estrutura do espaço-tempo.

Simultaneidade

Considere a situação ilustrada na figura 2. Dois eventos ocorrem em \(P\) e \(P^{\prime}\) igualmente distantes do observador \(O\) que está em repouso. Está observador poderá, por exemplo, coletar luz emitida pelos eventos e concluirá que os eventos foram simultâneos.

Figura 2

Outro observador \(O^{\prime}\) está em movimento na direção da separação entre os eventos. Como os sinais de luz levam algum tempo para alcançá-lo ele terá se deslocado de \(\Delta x\) na direção de \( P^{\prime}\) e, portanto, afirmará que \(P^{\prime}\) ocorreu antes que \(P\). Isto mostra que a simultaneidade não é um conceito absoluto. No entanto um observador em movimento transversal com relação à separação \(PP^{\prime}\), com qualquer velocidade, afirmará que os eventos ocorreram ao mesmo tempo.

Dilatação temporal

Na apresentação da TRE Einstein muitas vezes considerou necessário descrever uma forma operacional para se medir uma determinada quantidade. Para medir um intervalo de tempo, por exemplo, nada melhor que construir um relógio de luz, dada a constância de sua velocidade para todos os referenciais inerciais. Considere que dois observadores medem um intervalo de tempo, um deles no referencial \(O\) que se move com velocidade v em relação a \(O^{\prime}\). Um sinal de luz é emitido do ponto \(P_1\) , refletido por um espelho e coletado de volta em \(P_2\) ,como ilustrado na figura 3.

Figura 3

O observador \(O\) carrega consigo o relógio de luz e verifica que o tempo completo de ida e volta do sinal de luz é \(T = 2 \Delta t\) onde
$$ \Delta t = \frac{L}{c} . $$

O observador \(O^{\prime}\) , por sua vez, vê o relógio passar com velocidade \(v\) e medirá um intervalo de tempo \(T^{\prime} = 2 \Delta t^{\prime}\). Observe na figura que, pelo teorema de Pitágoras, temos
$$
L^{\prime 2} + \left( v \Delta t^{\prime} \right)^2 = \left( c \Delta
t^{\prime} \right)^2
$$

e, portanto,
$$
L^{\prime 2} = \Delta t^{\prime 2} \left( c^2 – v^2 \right) .
$$

Concluimos dai que
$$
\Delta t^{\prime} = \frac{L^{\prime}}{\sqrt{c^2 – v^2}} =
\frac{L^{\prime}}{c} \frac{1}{\sqrt{1 – \left( v / c \right)^2}} .
$$

Observe que \(L^{\prime} = L\) , pois não há ambiguidade no comprimento de distâncias perpendiculares à direção do movimento, logo
$$
T = \frac{2 L}{c}, \hspace{0.75em} T^{\prime} = \frac{2 L}{c}
\frac{1}{\sqrt{1 – \left( v / c \right)^2}} .
$$

Concluimos que
$$
T^{\prime} = \frac{T}{\sqrt{1 – \left( v / c \right)^2}},
$$
ou seja, o observador \(O^{\prime}\) mede intervalos de tempo maiores para o relógio em movimento, se comparado com as medidas do observador \(O\) , que está em repouso em relação ao relógio.

Contração espacial

Colocamos agora uma régua para medir a distância entre \(P_1\) e \(P_2\) nos dois referenciais. No primeiro caso ilustrado na figura 4, um observador \(O^{\prime}\) em repouso em relaçao à régua vê o feixe de luz ser emitido em \(P_1\) e recoletado em \(P_2\).

Figura 4

Como, para este observador, o intervalo de tempo gasto pela luz para percorrer o trajeto de ida é volta é \(T^{\prime}\), dado pela equação 3, a distância medida é \(R_0 =\) \(\overline{P_1 P_2} = vT^{\prime}\). Do ponto de vista do observador em \(O\) o relógio está fixo enquanto régua se move com velocidade \(– v\) e o tempo envolvido é \(T\). Portanto a distância percorrida é \( R = vT. \) Como conclusão os dois observadores medem uma distância diferente, relacionadas por
$$
\frac{R_0}{R} = \frac{T^{\prime}}{T} = \frac{1}{\sqrt{1 – \left( v / c
\right)^2}},
$$

o que representa uma contração espacial no sentido do movimento. O observador em movimento em relação à régua, vê seu comprimento como
$$
R = \sqrt{1 – \left( v / c \right)^2} R_0,
$$

onde \(R_0\) é o comprimento obtido por um observador parado em relação à régua.

é costume se definir os seguintes termos para o uso no contexto da TRE. A velocidade relativa do referencial ou objeto em estudo é
$$
\beta = \frac{v}{c},
$$

enquando

(4)

$$
\gamma = \frac{1}{\sqrt{1 – \left( \frac{v}{c} \right)^2}} =
\frac{1}{\sqrt{1 – \beta^2}} . \label{Gamma}
$$
Com estas definições podemos escrever
$$
T^{\prime} = \gamma T^{\prime}, \text{} R^{\prime} = R \sqrt{1 – \beta^2} .
$$

Concluímos que dois observadores em movimento relativo obtém diferentes resultados para medidas de intervalos de tempo e de distância ao longo do movimento. Cada observador verá as réguas do outro com menores comprimentos e seus relógios batendo mais devagar. Este fenômeno é irrelevante para os objetos da experiência diária, que têm velocidades pequenas se comparadas à da luz. No entanto dentro de aceleradores de partículas é possível acelerar partículas até velocidades muito próximas de \(c\) e, nesta situação, os efeitos relativísticos se tornam importantes.

(4) Como veremos mais tarde, a velocidade da luz não pode ser atingida por uma partícula com massa não nula.

Inúmeros exemplos podem ser citados como comprovação experimental destes resultados. Dentro dos aceladores de partículas são produzidas partículas \(\tau\) (tau), que têm meia-vida aproximada de \(3, 05 \times 10^{- 13}\) s quando observadas por um observador em repouso no referencial do laboratório. Elas se apresentam com velocidades muito altas, bem próximas da velocidade da luz(4). Portanto, estas partículas não pode viajar em média uma distância superior a
$$
d = 3 \times 10^8 \hspace{0.25em} \text{m.s}^{- 1} \times 3, 05 \times
10^{- 13} \hspace{0.25em} \text{s} = 9, 15 \times 10^{- 5} \hspace{0.25em}
\text{m},
$$

antes que decaiam sob a forma de outras partículas. No entanto se observa que elas viajam por distâncias muito superiores a esta! A solução para o aparente paradoxo está na TRE. No referencial do laboratório as partículas estão em altas velocidades e por isto seus relógios internos batem mais devagar, permitindo uma viagem mais longa antes do decaimento. Para um referencial colocado sobre as partículas, o chamado referencial comóvel, o tempo flui inalterado mas as distâncias ao longo do movimento ficam contraídas e o resultado final é o mesmo.

Ambos os fenômenos dependem do fator \(\gamma\) definido acima. Partículas \(\tau\) geradas no SLAC, Stanford Linear Accelerator Collider atingem tipicamente \(\gamma = 20\) e as partículas viajam por uma distância média de
$$
20 \times (9, 15 \times 10^{- 5} \hspace{0.25em} \text{m}) = 1, 8 \times
10^{- 2} \hspace{0.25em} \text{m} \approx 1, 8 \hspace{0.25em}
\text{mm}.
$$

Na prática, em um laboratório, a medida do alcance média das partículas é usada para se calcular a meia-vida do \(\tau\).

 

As transformações de Lorentz

Fundamentos Históricos da TRE

Issac Newton

Até o final do século XIX a física se baseava sobre dois pilares: a mecânica de Newton e a sua teoria da gravitação universal e o eletromagnetismo propostos por Faraday e resumidos nas equações de Maxwell. Logo ficou claro, no entanto, que as equações do eletromagnetismo não eram invariantes sob as mesmas leis de transformação que deixavam inalteradas as equações de Newton, as transformações de Galileu. Em outras palavras os processos eletromagnéticos, tais como interação entre cargas e correntes ou a propagação das ondas eletromagnéticas, não são igualmente observados em todos os referenciais inerciais. Além disto Maxwell mostrou sem ambiguidade que a luz é uma onda que se propaga mesmo no vácuo. Deveria haver, portanto, um meio responsável por esta propagação. Formulou-se então o conceito de um sistema de referencial privilegiado que correspondia a este meio, em relação ao qual se poderia determinar o movimento absoluto de todos os corpos. A esse sistema ideal se chamou éter cósmico.

Diversas tentativas foram feitas para resolver a contradição. A primeira possibilidade consistia em considerar que o princípio da relatividade não era aplicável aos fenômenos electromagnéticos, ponto de vista defendido por G. Lorentz, o fundador da teoria eletrônica. Segundo esta visão um sistema inercial parado em relação ao éter é um sistema privilegiado, onde valem as leis de Maxwell. Somente neste sistema a velocidade da luz no vácuo é igual em todas as direções. A segunda possibilidade era a de alterar as equações de Maxwell para que se tornassem invariantes sob as transformações de Galileu, mantendo intactos os conceitos de espaço e tempo clássicos. Esta foi a abordagem adotada por G. Hertz, entre outros. Segundo ele o éter é arrastado pelos corpos em movimento de forma que os fenômenos eletromagnéticos ocorrem da mesma para observadores parados ou em movimento. O princípio da relatividade de Galileu fica assim preservado.

(3) A velocidade da luz, no vácuo, é de aproximadamente \(c = 3 \times 10^{10} cms^{-1}\).


De acordo com as leis da eletrodinâmica a luz é uma onda que se progaga no vácuo com velocidade igual(3) em todas as direções. Por outro lado, de acordo com a composição de velocidades da mecânica de Newton, a velocidade seria diferente se observada por observadores em movimento relativo à fonte. Diversos experimentos foram propostos para detectar este meio. Em 1881 os cientistas americanos Michelson e Morley, entre outros pesquisadores, construiram um aparato com o objetivo de descobrir a velocidade com que a Terra supostamente se desloca através do éter cósmico. O aparelho, representado esquematicamente na figura 1, consistia em uma fonte de luz em \(F\) , refletida por uma placa semi-espelhada \(M\) que divide o feixe de luz. Os espelhos \(M_1\) e \(M_2\) refletem de volta o feixe que é coletado pelo detetor em \(O\). Inicialmente um dos braços do instrumento foi alinhado com a direção de movimento da Terra, ficando o outro na perpendicular.

Experimento de Michelson e Morley

Qualquer atraso na coleta de um os feixes de luz causaria figuras de interferência formadas em \(F\) , observadas por meio do interferômetro de Michelson, o que dotava a montagem de alto grau de precisão. A experiência foi tentada para diversas orientações dos braços, em diferentes horas do dia e épocas do ano, sempre com resultado nulo. Esta é provalvelmente a mais famosa experiência a se tornar importante por seu resultado negativo! Não foi possível observar o movimento da Terra em relação ao éter e a hipótese da existência de um sistema de referência privilegiado foi rejeitada experimentalmente.

Uma terceira possibilidade para a solução do confito entre a teoria eletromagnética e a mecânica clássica consiste na rejeição das noções clássicas sobre o espaço e tempo, a reconstrução das equações do movimento e a manutenção das equações de Maxwell. Esta foi, como veremos, a atitude adotada por Einstein e que deu origem à TRE.

A teoria de Einstein foi construída sobre dois postulados:

  • A velocidade da luz é a mesma para todos os observadores, independentemente de seu movimento relativo.
  • As leis da física são as mesmas em qualquer referencial inercial.

O primeiro postulado estabelece que a velocidade da luz, que denotaremos por \(c\), é uma constante universal da natureza. Um feixe de luz disparado por uma fonte em alta velocidade terá a mesma velocidade que um feixe disparado por uma fonte em repouso, em relação ao observador. O segundo representa um conceito importante, mesmo para a física clássica, embora não tenha sido justamente discutido e considerado no contexto clássico, antes da apresentação da Relatividade. Ele se baseia no conceito de que as leis da natureza devem ser válidas para quaisquer observadores postados em diferentes referenciais referenciais. Em outras palavras a forma matemática sob que estas leis estão expresas deve ser invariante para os diversos observadores.

Einstein desenvolveu uma teoria do movimento consistente com a invariância da velocidade da luz e com as propriedades de transformação da teoria de Maxwell. Ela é denominada Teoria da Relatividade Especial para se diferenciar da Teoria da Relatividade Geral, que generaliza a teoria especial com leis que são invariantes sob transformações gerais de coordenadas.

Página manuscrita de Einstein sobre a Teoria da Relatividade Geral, publicada em Annalen der Physik in 1916.

A Teoria da Relatividade Geral (TRG) é uma generalização da TRE. Na primeira Einstein estudou a invariância das leis da mecânica sob todas as transformações entre referenciais inerciais, o que significa dizer que elas tem a mesma forma para todos os observadores inerciais. Na TRG ele levou adiante esse princípio para valer para todos os observadores, inerciais ou acelerados. O resultado dessa busca terminou por exigir um formalismo matemático já proposto pelo matemático Bernhard Riemann. A geometria Rimannaniana é uma generalização de espaços que não necessariamente satisfazem os postulados de Euclides.

A TRG leva a diversas conclusões surpreendentes como a de que relógios próximos de grandes massas batem mais devagar pois ali e espaço-tempo é curvo. Ela é a melhor descrição conhecida para a interação gravitacional, que é uma consequência da curvatura do espaço-tempo, causada pela matéria.

Como a gravitação é a força predominante em largas escalas, a TRG é o fundamento da Cosmologia Moderna. Ela também é importante na descrição da evoluções das estrelas e da formação de buracos negros.

 

    Equações de campo da Teoria da Relatividade Geral

Relatividade de Galileu

Relatividade de Galileu


O ponto de partida para a descrição matemática de uma lei da natureza é a definição de um sistema de referencial e de coordenadas. Na mecânica os referenciais inerciais são particularmente importantes pois neles as equações do movimento tomam sua forma mais simples. Referenciais inerciais são aqueles em que os observadores não estão sujeitos à ação de forças externas e, portanto, estão em repouso ou se deslocam em movimento retilíneo uniforme.

Pode parecer irrelevante incluir a coordenada tempo, t, nessa transformação, uma vez que ela fica inalterada em qualquer referencial. Não será esse o caso quando considerarmos a relatividade.

Estabeleceremos um sistema de coordenadas em um destes referenciais marcando cada “ponto”, que chamaremos de evento, com os números \((t, \hspace{0.25em} x, \hspace{0.25em} y, \hspace{0.25em} z)\) descrevendo quando e onde o evento ocorreu.

Suponha que um observador no referencial \(S\) associa a um evento as coordenadas \((t, \hspace{0.25em} x, \hspace{0.25em} y, \hspace{0.25em} z)\) enquanto outro, no referencial \(S \acute{}\) associa a um evento as coordenadas \((t^{\prime}, \hspace{0.25em} x^{\prime}, \hspace{0.25em} y^{\prime}, \hspace{0.25em} z^{\prime})\). Se o referencial \(S \acute{}\) se move em relação a \(S\) com velocidade \(v\) constante, por exemplo na direção do eixo \(x\), então os dois sistemas de coordenadas se relacionam da seguinte forma:

$$
\left\{ \begin{array}{cl}
t^{\prime} = & t\\
x^{\prime} = & x – vt\\
y^{\prime} = & y\\
z^{\prime} = & z.
\end{array} \right.
$$

No caso mais geral do referencial \(S^{\prime}\) com velocidade \(v = \left( v_x, \hspace{0.25em} v_y, \hspace{0.25em} v_z \right)\) em relação a \(S\) a regra de transformação de coordenadas e sua inversa são dadas respectivamente por
$$
\left\{ \begin{array}{cl}
t^{\prime} = & t\\
x^{\prime} = & x – v_x t\\
y^{\prime} = & y – v_y t\\
z^{\prime} = & z – v_z t.
\end{array} \right. \hspace{0.75em} \hspace{0.75em} \text{ e } \hspace{0.75em} \left\{
\begin{array}{cl}
t = & t^{\prime}\\
x = & x^{\prime} + v_x t\\
y = & y^{\prime} + v_y t\\
z = & z^{\prime} + v_z t.
\end{array} \right.
$$

Espaço-tempo clássico

Uma nota sobre o espaço onde a mecânica clássica atua pode ser interessante como uma preparação para o estudo da relatividade. Suponhamos que dois eventos \(P\) e \(P^{\prime}\) ocorrem respectivamente sob as coordenadas
$$
P = (t,\;x,\;y,\;z)\hspace{2.0em} \text{e}\hspace{2.0em} P^{\prime} = (t^{\prime},\;x^{\prime}, \;y^{\prime}, \;z^{\prime}).
$$

Podemos calcular as distâncias
$$
\begin{array}{cl}
\Delta t = & t^{\prime} – t\\
& \\
\Delta s = & \sqrt{\left( x^{\prime} – x \right)^2 + \left( y^{\prime} –
y \right)^2 + \left( z^{\prime} – z \right)^2}
\end{array}
$$

que são as mesmas para qualquer observador que as observe. Na mecânica de Newton tempo é universal e independe do movimento do observador. O afastamento espacial entre os eventos, \(\Delta s\), é um objeto geométrico, invariante para qualquer sistema de coordenada que possamos usar. Dizemos que esta distância é invariante sob reparametrizações do espaço. Podemos escrever sob forma matricial
$$
\Delta s^2 = \Delta x^2 + \Delta y^2 + \Delta z^2 = \left( \Delta x
\hspace{0.75em} \Delta y \hspace{0.75em} \Delta z \right) \left(
\begin{array}{ccc}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{array} \right) \left( \begin{array}{c}
\Delta x\\
\Delta y\\
\Delta z
\end{array} \right)
$$

ou, alternativamente \(\Delta s^2 = \sum_{i, j} \Delta x^i \Delta x^j \delta_{ij} = \Delta x^i \Delta x^j \delta_{ij}\), onde \(\delta_{ij}\) são os componentes da métrica de Euclides,
$$
\delta_{ij} = \left( \begin{array}{ccc}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{array} \right) \hspace{4pt}\text{ ou } \hspace{4pt} \delta_{ij} = \left\{
\begin{array}{cl}
1 & \hspace{4pt}\text{ se } \hspace{4pt} i = j\\
0 & \hspace{4pt}\text{ se } \hspace{4pt} i \neq j
\end{array} \right.
$$

e a convenção de Einstein foi usada para indicar a soma sobre as quantidades com índices repetidos. Isto mostra que o espaço onde ocorrem os fenômenos clássicos é o produto cartesiano de \(I \hspace{-4pt} R^3\), um espaço euclidiano de três dimensões mais uma dimensão temporal.

Uma revisão adicional pode tornar mais fácil o estudo a seguir. Sendo \(I \hspace{-4pt} R^3\) um espaço vetorial escolhemos nele a base ortonormal canônica
$$
\left\{ \mathbf{\hat{e}}_i \right\} = \left\{ \hat{\imath}, \hat{\jmath}, \hat{k} \right\}.
$$

Qualquer vetor de \(I \hspace{-4pt} R^3\) pode ser escrito como uma combinação linear dos vetores da base
$$
\vec{v} = \sum^3_{i = 1} v^i \mathbf{\hat{e}}_i = v^i \mathbf{\hat{e}}_i.
$$

Neste espaço definimos o produto interno ou produto escalar, uma aplicação bilinear, simétrica e positiva definida, com o seguinte efeito sobre os vetores da base ortonormal,
$$
\left\langle \mathbf{\hat{e}}_i, \mathbf{\hat{e}}_j \right\rangle = \delta_{ij}.
$$

Então, se \(\vec{u} = u^i \mathbf{\hat{e}}_i\) é outro vetor temos
$$
\left\langle \vec{u}, \vec{v} \right\rangle = \left\langle u^i
\mathbf{\hat{e}}_i, v^j \mathbf{\hat{e}}_j \right\rangle = u^i v^j
\left\langle \mathbf{\hat{e}}_i, \mathbf{\hat{e}}_j \right\rangle = u^i v^j
\delta_{ij},
$$

que é o produto escalar usual \(\left\langle \vec{u}, \vec{v} \right\rangle = u^1 v^1 + u^2 v^2 + u^3 v^3\). A norma ou comprimento de um vetor é
$$
\left| \vec{u} \right| = \sqrt{\left\langle \vec{u}, \vec{u} \right\rangle}
= \sqrt{\left( u^1 \right)^2 + \left( u^2 \right)^2 + \left( u^3 \right)^2}.
$$

As equações do movimento

Vamos denotar por \(\vec{r} = \left( x, y, z \right)\) o vetor posição de um ponto em \(I \hspace{-4pt} R^3\). Uma trajetória neste espaço, percorrida por uma partícula, pode ser representada por uma curva parametrizada sob a forma
$$
\vec{r} \left( t \right) = \left( x \left( t \right), y \left( t \right), z \left( t \right) \right),
$$

sendo que o parâmetro \(t\) é o tempo. Sua velocidade é definida como a variação instantânea da posição com o tempo, ou seja
$$
\vec{v} (t) = \frac{d}{dt} \vec{r} \left( t \right) = \left( \dot{x}
\left( t \right), \dot{y} \left( t \right), \dot{z} \left( t \right) \right)
$$

onde a notação \(\mathbf{\dot{x}}\) foi introduzida para indicar a derivada com relação ao tempo. A aceleração de uma partícula é a derivada segunda
$$
\vec{a} (t) = \frac{d^2}{dt^2} \vec{r} \left( t \right) = \left( \ddot{x}
\left( t \right), \ddot{y} \left( t \right), \ddot{z} \left( t \right) \right).
$$

A equação de Newton uma equação diferencial
$$
\vec{F} = m \vec{a} (t),
$$

cuja solução é a trajetória da partícula.

Exemplo: Na teoria de Newton as trajetórias de partículas livres, i.e., não submetidas a nenhuma força, são retas de \(I \hspace{-4pt} R^3\). Temos
$$
\vec{F} = 0 \Rightarrow \vec{a} = 0,
$$

o que representa três equações diferenciais
$$
\ddot{x} \left( t \right) = 0, \hspace{0.75em} \ddot{y} \left( t \right) = 0, \hspace{0.75em} \ddot{z} \left( t \right) = 0,
$$

com soluções
$$
x \left( t \right) = at + b, \hspace{0.75em} y \left( t \right) = ct + d, \hspace{0.75em} z \left( t \right) = et + f,
$$

onde \(a, \hspace{0.3em} b, \hspace{0.3em}c, \hspace{0.3em}d, \hspace{0.3em}e, \hspace{0.3em}f \)
são constantes que podem ser determinadas pelas condições iniciais. Observe que
$$
\vec{r} \left( 0 \right) = \vec{r}_0 = \left( b, \hspace{0.25em} d,
\hspace{0.25em} f \right) \hspace{0.8em} \text{e} \hspace{0.8em} \vec{v} \left( 0 \right) = \vec{v}_0 =
\left( a, \hspace{0.25em} c, \hspace{0.25em} e \right)
$$

são, respectivamente, a posição e a velocidade inicial da partícula.

Para calcular a distância percorrida podemos usar a fórmula do comprimento de arco \(s\), obtida da seguinte forma: para variações infinitesimais do parâmetro \(t\) o arco tem o comprimento infinitesimal
$$
ds^2 = dx^2 + dy^2 + dz^2 = \left[ \left( \frac{dx}{dt} \right)^2 + \left(
\frac{dy}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 \right] dt^2
$$

pois cada função coordenada é função de \(t\) apenas e \(dx = \left( dx / dt \right) dt\) , e análogos para \(y\) e \(z\). Para uma varição finita do parâmetro encontramos o comprimento de arco por meio da integral definida
$$
s = \int_{t_1}^{t_2} \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2} dt,
$$

que é a distância total percorrida pela partícula.

A energia cinética de uma partícula é um escalar, definido como
$$
T = \frac{1}{2} mv^2
$$

onde \(v = \left| \vec{v} \right| = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}\) , enquanto o momento linear de uma partícula é o vetor
$$
\vec{p} = m \vec{v} \mathbf{=} m \left( \dot{x}, \dot{y}, \dot{z} \right) .
$$

Podemos portanto escrever a equação de movimento de Newton como
$$
\vec{F} = \frac{d \vec{p}}{dt},
$$

válida mesmo que a massa não seja uma constante. Para uma partícula de massa constante temos uma relação entre a energia cinética e o
momento que será útil futuramente. Lembrando que \(v^2 =\) \(\vec{v} \mathbf{.} \vec{v} \mathbf{}\) temos que a taxa de variação de \(T\) com o tempo é

$$
\frac{dT}{dt} = \frac{1}{2} m \frac{d}{dt} \left( \vec{v} \mathbf{.}
\vec{v} \right) = m \vec{v} \mathbf{.} \frac{d \vec{v}}{dt} = \vec{v} .
\vec{F} . \label{energiacinetica}
$$
Para um sistema de \(N\) partículas temos que a energia cinética e o momento são as somas
$$
T = \sum_{i = 1}^N \frac{1}{2} m_i v_i^2, \vec{p} = \sum_{i = 1}^N m_i
\vec{v}_i .
$$

Estas definições de energia e momento são motivadas pelo fato experimental de que a soma das energias, cinética e potencial, e o momento são quantidades que se conservam durante a trajetória de uma partícula ou de um sistema de partículas.

Exercícios

  • Faça um esboço da trajetória em \(I \hspace{-4pt} R^2\) descrita em forma paramétrica por
    $$
    \mathbf{x} \left( t \right) = \left( R \cos \omega t, R \textit{sen} \omega t \right)
    $$
    Mostre que a aceleração, neste caso, é sempre perpendicular á velocidade.
  • Faça um esboço da trajetória em \(I \hspace{-4pt} R^3\) descrita em forma paramétrica por
    $$
    \mathbf{x} \left( t \right) = \left( \cos \omega t, \textit{sen} \omega t,
    t \right) .
    $$
  • Encontre o comprimento da trajetória acima de \(t = 0\) até \(t = 1\).

 

Consequências da invariância da velocidade da luz

Teoria da Relatividade Especial

Einstein andando de bicicleta em Santa Barbara, CA, quando estava visitando o EUA. Nessa época Hitler chegou ao poder e Einstein não retornou à Alemanha.

A Teoria da Relatividade de Einstein, tanto em sua versão Especial como Geral, revolucionou a física no início do século XX. Embora boa parte do formalismo matemático necessário já estivessem pronto, a comunidade científica da época não percebeu o significado do trabalho feito por Michelson e Morley, Lorentz, Poincaré e outros.

A teoria não foi imediatamente aceita na comunidade. Por violar diversos conceitos considerados essenciais à teoria clássica ela foi rejeitada, inclusive na própria Alemanha, onde nasceu Einstein, sendo atacada como física judaica. Hoje a teoria é essencial para quase todos as áreas da física, principalmente na pesquisa de ponta que integra a relatividade com a física quântica.


“Após dez anos de reflexões tal princípio emergiu de um paradoxo que eu já tinha antevisto quando tinha 16 anos: se eu perseguir um feixe de luz com a mesma velocidade que uma frente de onda (a velocidade da luz no vácuo) então eu deveria observar este feixe como um campo eletromagnético constante e periódico no espaço. No entanto tal coisa não parece existir, nem com base na experimentação nem de acordo com as equações de Maxwell…” Einstein (1951)“Daqui por diante o espaço e o tempo estão fadados a desaparecer como meras sombras e apenas um tipo de união entre os dois terá preservada sua realidade independente” Minkowski, 1908.“As coisas mais maravilhosas que podemos experimentar são as misteriosas. Elas são a origem de toda verdadeira arte e ciência. Aquele para quem essa sensação é um estranho, aquele que não mais consegue parar para admirar e extasiar-se em veneração, é como se estivesse morto: seus olhos estão fechados.”

Introdução

(1) O Cálculo foi desenvolvido simultâneamente e de forma independente por Leibniz. Muitos outros matemáticos contribuíram para o aperfeiçoamente desta disciplina.

A Mecânica é o ramo da física que estuda a ação das forças sobre os corpos e o comportamento dos sistemas materiais sujeitos à atuação dessas forças. Seus fundamentos foram lançados por Issac Newton no século XVII, apoiado sobre as contribuições de Galileu, Copérnico e Kepler. Para descrever com precisão a teoria recém elaborada Newton desenvolveu o formalismo matemático do Cálculo Diferencial e Integral(1).A mecânica de Newton é baseada em três axiomas fundamentais:

  • A lei da inércia, esboçada previamente por Galileu: um corpo não submetido à ação de forças externas conserva seu estado de repouso ou movimento.
  • Um corpo de massa \(m\) submetido à ação de uma força externa \(\vec{F}\) modifica estado de movimento de acordo com a relação$$\vec{F} = m \vec{a} \mathbf{,} $$onde \(\vec{a}\) é o vetor aceleração deste corpo. A massa é uma constante de proporcionalidade que exprime a relação entre a força aplicada e a aceleração obtida.
  • A lei de ação e reação: todo corpo A, submetido a uma força aplicada por outro corpo B, aplicará sobre o último uma força de mesma intensidade e sentido contrário.
(2) Esse axioma foi questionado e revisto pela Teoria da Relatividade de Einstein.

Três importantes teoremas de conservação são resultantes destes postulados:

  • Todo sistema físico fechado contém uma quantidade de matéria invariante(2), independentemente dos processos que ali ocorrem.
  • Sistemas com simetria linear em alguma direção exibem conservação do momento linear relativo a esta direção. Sistemas isotrópicos, com simetria por rotações em torno de algum eixo exibem conservação do momento angular relativo a este eixo.
  • A energia total em um sistema fechado é constante.

A mecânica de Newton, ou mecânica clássica, é uma teoria testada com alto grau de precisão para uma ampla faixa de experimentos. Ele descreve com excelente prescisão o movimento de bolas de bilhar, automóveis, satélites artificiais e o movimento planetário. Existe, no entanto, diversos fenômenos observados que não se encaixam dentro do panorama clássico, em particular os fenômenos relativos à átomos e moléculas,bem como às partículas subatômicas, e aqueles que envolvem partículas com velocidades muito altas, comparáveis à velocidade daluz. A primeira classe destes fenômenos foi corretamente descrita no finaldo século XIX e início do século XX por meio da Mecânica Quântica. A segunda foi encontrada por Albert Einstein.

Em 1905 Einstein publicou três artigos que revolucionaram a ciência física e abriram novas frentes em pesquisa fundamental. Um deles tratava do movimento browniano, em outro Einstein apresentava uma solução para o problema do efeito fotoelétrico que representou um impulso na formulação da teoria quântica. No terceiro ele apresentava a solução para uma divergência encontrada há algum tempo entre as teorias do eletromagnetismo de Maxwell e a mecânica de Newton. As duas teorias, embora estivessem ambas bem fundamentadas teórica e experimentalmente, não eram compatíveis entre si. Devido a crença profunda de que a teoria de Newton, capaz de descrever com precisão os movimentos observados na experiência diária, estava correta, a comunidade científica preferia manter inalterada a mecânica clássica e buscar por modificações da teoria eletromagnética.

Einstein e Bohr

Einstein, por outro lado, estivera interessado sobre como veria uma frente de onda luminosa se estivesse viajando com ela, na mesma velocidade. Ele compreendeu que a teoria de Maxwell estava correta e que, para altas velocidades quando comparadas à velocidade da luz, a mecânica deveria ser modificada. Desta forma ele desenvolveu a Teoria da Relatividade Especial, que passaremos a designar simplesmente por TRE.

Esta teoria se baseia em uma afirmação fundamental: a velocidade da luz é a mesma para qualquer observador, independentemente de sua velocidade. As consequências disto são curiosas. Um comprimento ao longo da direção do movimento se torna mais curto e relógios em movimento batem mais devagar. Espaço e tempo são aspectos de um mesmo fenômeno. Outro efeito interessante previsto é o de que a massa de um objeto aumenta, tendendo a infinito quando sua velocidade se aproxima da velocidade da luz. Este fenômeno é observado, por exemplo, dentro de um acelerador de partículas. Einstein mostrou ainda que matéria e energia são dois aspectos de uma mesmo princípio, podendo ser transformadas uma na outra, como ocorre dentro de um reator nuclear, de uma bomba de hidrogênio ou no interior de uma estrela.

A descoberta da teoria da relatividade não implica em que a teoria de Newton está incorreta. Pelo contrário, as equações clássicas do movimento estão contidas nas equações relativísticas como um caso particular, em situações onde as velocidades envolvidas são pequenas quando comparadas à velocidade da luz. Elas descrevem corretamente, ou com excelente aproximação, os fenômenos que ocorrem no cotidiano. Para o movimento em altas velocidades, tais como o que acontece dentro dos aceleradores de partículas, nas partículas cósmicas que atingem a atmosfera da Terra ou no interior de estrelas superquentes torna-se necessário usar a TRE que, sob estas condições, tem sido testada em inúmeros experimentos, com grande grau de precisão.

Fundamentos Históricos da TRE