Relatividade de Galileu


O ponto de partida para a descrição matemática de uma lei da natureza é a definição de um sistema de referencial e de coordenadas. Na mecânica os referenciais inerciais são particularmente importantes pois neles as equações do movimento tomam sua forma mais simples. Referenciais inerciais são aqueles em que os observadores não estão sujeitos à ação de forças externas e, portanto, estão em repouso ou se deslocam em movimento retilíneo uniforme.

Pode parecer irrelevante incluir a coordenada tempo, t, nessa transformação, uma vez que ela fica inalterada em qualquer referencial. Não será esse o caso quando considerarmos a relatividade.

Estabeleceremos um sistema de coordenadas em um destes referenciais marcando cada “ponto”, que chamaremos de evento, com os números \((t, \hspace{0.25em} x, \hspace{0.25em} y, \hspace{0.25em} z)\) descrevendo quando e onde o evento ocorreu.

Suponha que um observador no referencial \(S\) associa a um evento as coordenadas \((t, \hspace{0.25em} x, \hspace{0.25em} y, \hspace{0.25em} z)\) enquanto outro, no referencial \(S \acute{}\) associa a um evento as coordenadas \((t^{\prime}, \hspace{0.25em} x^{\prime}, \hspace{0.25em} y^{\prime}, \hspace{0.25em} z^{\prime})\). Se o referencial \(S \acute{}\) se move em relação a \(S\) com velocidade \(v\) constante, por exemplo na direção do eixo \(x\), então os dois sistemas de coordenadas se relacionam da seguinte forma:

$$
\left\{ \begin{array}{cl}
t^{\prime} = & t\\
x^{\prime} = & x – vt\\
y^{\prime} = & y\\
z^{\prime} = & z.
\end{array} \right.
$$

No caso mais geral do referencial \(S^{\prime}\) com velocidade \(v = \left( v_x, \hspace{0.25em} v_y, \hspace{0.25em} v_z \right)\) em relação a \(S\) a regra de transformação de coordenadas e sua inversa são dadas respectivamente por
$$
\left\{ \begin{array}{cl}
t^{\prime} = & t\\
x^{\prime} = & x – v_x t\\
y^{\prime} = & y – v_y t\\
z^{\prime} = & z – v_z t.
\end{array} \right. \hspace{0.75em} \hspace{0.75em} \text{ e } \hspace{0.75em} \left\{
\begin{array}{cl}
t = & t^{\prime}\\
x = & x^{\prime} + v_x t\\
y = & y^{\prime} + v_y t\\
z = & z^{\prime} + v_z t.
\end{array} \right.
$$

Espaço-tempo clássico

Uma nota sobre o espaço onde a mecânica clássica atua pode ser interessante como uma preparação para o estudo da relatividade. Suponhamos que dois eventos \(P\) e \(P^{\prime}\) ocorrem respectivamente sob as coordenadas
$$
P = (t,\;x,\;y,\;z)\hspace{2.0em} \text{e}\hspace{2.0em} P^{\prime} = (t^{\prime},\;x^{\prime}, \;y^{\prime}, \;z^{\prime}).
$$

Podemos calcular as distâncias
$$
\begin{array}{cl}
\Delta t = & t^{\prime} – t\\
& \\
\Delta s = & \sqrt{\left( x^{\prime} – x \right)^2 + \left( y^{\prime} –
y \right)^2 + \left( z^{\prime} – z \right)^2}
\end{array}
$$

que são as mesmas para qualquer observador que as observe. Na mecânica de Newton tempo é universal e independe do movimento do observador. O afastamento espacial entre os eventos, \(\Delta s\), é um objeto geométrico, invariante para qualquer sistema de coordenada que possamos usar. Dizemos que esta distância é invariante sob reparametrizações do espaço. Podemos escrever sob forma matricial
$$
\Delta s^2 = \Delta x^2 + \Delta y^2 + \Delta z^2 = \left( \Delta x
\hspace{0.75em} \Delta y \hspace{0.75em} \Delta z \right) \left(
\begin{array}{ccc}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{array} \right) \left( \begin{array}{c}
\Delta x\\
\Delta y\\
\Delta z
\end{array} \right)
$$

ou, alternativamente \(\Delta s^2 = \sum_{i, j} \Delta x^i \Delta x^j \delta_{ij} = \Delta x^i \Delta x^j \delta_{ij}\), onde \(\delta_{ij}\) são os componentes da métrica de Euclides,
$$
\delta_{ij} = \left( \begin{array}{ccc}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{array} \right) \hspace{4pt}\text{ ou } \hspace{4pt} \delta_{ij} = \left\{
\begin{array}{cl}
1 & \hspace{4pt}\text{ se } \hspace{4pt} i = j\\
0 & \hspace{4pt}\text{ se } \hspace{4pt} i \neq j
\end{array} \right.
$$

e a convenção de Einstein foi usada para indicar a soma sobre as quantidades com índices repetidos. Isto mostra que o espaço onde ocorrem os fenômenos clássicos é o produto cartesiano de \(I \hspace{-4pt} R^3\), um espaço euclidiano de três dimensões mais uma dimensão temporal.

Uma revisão adicional pode tornar mais fácil o estudo a seguir. Sendo \(I \hspace{-4pt} R^3\) um espaço vetorial escolhemos nele a base ortonormal canônica
$$
\left\{ \mathbf{\hat{e}}_i \right\} = \left\{ \hat{\imath}, \hat{\jmath}, \hat{k} \right\}.
$$

Qualquer vetor de \(I \hspace{-4pt} R^3\) pode ser escrito como uma combinação linear dos vetores da base
$$
\vec{v} = \sum^3_{i = 1} v^i \mathbf{\hat{e}}_i = v^i \mathbf{\hat{e}}_i.
$$

Neste espaço definimos o produto interno ou produto escalar, uma aplicação bilinear, simétrica e positiva definida, com o seguinte efeito sobre os vetores da base ortonormal,
$$
\left\langle \mathbf{\hat{e}}_i, \mathbf{\hat{e}}_j \right\rangle = \delta_{ij}.
$$

Então, se \(\vec{u} = u^i \mathbf{\hat{e}}_i\) é outro vetor temos
$$
\left\langle \vec{u}, \vec{v} \right\rangle = \left\langle u^i
\mathbf{\hat{e}}_i, v^j \mathbf{\hat{e}}_j \right\rangle = u^i v^j
\left\langle \mathbf{\hat{e}}_i, \mathbf{\hat{e}}_j \right\rangle = u^i v^j
\delta_{ij},
$$

que é o produto escalar usual \(\left\langle \vec{u}, \vec{v} \right\rangle = u^1 v^1 + u^2 v^2 + u^3 v^3\). A norma ou comprimento de um vetor é
$$
\left| \vec{u} \right| = \sqrt{\left\langle \vec{u}, \vec{u} \right\rangle}
= \sqrt{\left( u^1 \right)^2 + \left( u^2 \right)^2 + \left( u^3 \right)^2}.
$$

As equações do movimento

Vamos denotar por \(\vec{r} = \left( x, y, z \right)\) o vetor posição de um ponto em \(I \hspace{-4pt} R^3\). Uma trajetória neste espaço, percorrida por uma partícula, pode ser representada por uma curva parametrizada sob a forma
$$
\vec{r} \left( t \right) = \left( x \left( t \right), y \left( t \right), z \left( t \right) \right),
$$

sendo que o parâmetro \(t\) é o tempo. Sua velocidade é definida como a variação instantânea da posição com o tempo, ou seja
$$
\vec{v} (t) = \frac{d}{dt} \vec{r} \left( t \right) = \left( \dot{x}
\left( t \right), \dot{y} \left( t \right), \dot{z} \left( t \right) \right)
$$

onde a notação \(\mathbf{\dot{x}}\) foi introduzida para indicar a derivada com relação ao tempo. A aceleração de uma partícula é a derivada segunda
$$
\vec{a} (t) = \frac{d^2}{dt^2} \vec{r} \left( t \right) = \left( \ddot{x}
\left( t \right), \ddot{y} \left( t \right), \ddot{z} \left( t \right) \right).
$$

A equação de Newton uma equação diferencial
$$
\vec{F} = m \vec{a} (t),
$$

cuja solução é a trajetória da partícula.

Exemplo: Na teoria de Newton as trajetórias de partículas livres, i.e., não submetidas a nenhuma força, são retas de \(I \hspace{-4pt} R^3\). Temos
$$
\vec{F} = 0 \Rightarrow \vec{a} = 0,
$$

o que representa três equações diferenciais
$$
\ddot{x} \left( t \right) = 0, \hspace{0.75em} \ddot{y} \left( t \right) = 0, \hspace{0.75em} \ddot{z} \left( t \right) = 0,
$$

com soluções
$$
x \left( t \right) = at + b, \hspace{0.75em} y \left( t \right) = ct + d, \hspace{0.75em} z \left( t \right) = et + f,
$$

onde \(a, \hspace{0.3em} b, \hspace{0.3em}c, \hspace{0.3em}d, \hspace{0.3em}e, \hspace{0.3em}f \)
são constantes que podem ser determinadas pelas condições iniciais. Observe que
$$
\vec{r} \left( 0 \right) = \vec{r}_0 = \left( b, \hspace{0.25em} d,
\hspace{0.25em} f \right) \hspace{0.8em} \text{e} \hspace{0.8em} \vec{v} \left( 0 \right) = \vec{v}_0 =
\left( a, \hspace{0.25em} c, \hspace{0.25em} e \right)
$$

são, respectivamente, a posição e a velocidade inicial da partícula.

Para calcular a distância percorrida podemos usar a fórmula do comprimento de arco \(s\), obtida da seguinte forma: para variações infinitesimais do parâmetro \(t\) o arco tem o comprimento infinitesimal
$$
ds^2 = dx^2 + dy^2 + dz^2 = \left[ \left( \frac{dx}{dt} \right)^2 + \left(
\frac{dy}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 \right] dt^2
$$

pois cada função coordenada é função de \(t\) apenas e \(dx = \left( dx / dt \right) dt\) , e análogos para \(y\) e \(z\). Para uma varição finita do parâmetro encontramos o comprimento de arco por meio da integral definida
$$
s = \int_{t_1}^{t_2} \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2} dt,
$$

que é a distância total percorrida pela partícula.

A energia cinética de uma partícula é um escalar, definido como
$$
T = \frac{1}{2} mv^2
$$

onde \(v = \left| \vec{v} \right| = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}\) , enquanto o momento linear de uma partícula é o vetor
$$
\vec{p} = m \vec{v} \mathbf{=} m \left( \dot{x}, \dot{y}, \dot{z} \right) .
$$

Podemos portanto escrever a equação de movimento de Newton como
$$
\vec{F} = \frac{d \vec{p}}{dt},
$$

válida mesmo que a massa não seja uma constante. Para uma partícula de massa constante temos uma relação entre a energia cinética e o
momento que será útil futuramente. Lembrando que \(v^2 =\) \(\vec{v} \mathbf{.} \vec{v} \mathbf{}\) temos que a taxa de variação de \(T\) com o tempo é

$$
\frac{dT}{dt} = \frac{1}{2} m \frac{d}{dt} \left( \vec{v} \mathbf{.}
\vec{v} \right) = m \vec{v} \mathbf{.} \frac{d \vec{v}}{dt} = \vec{v} .
\vec{F} . \label{energiacinetica}
$$
Para um sistema de \(N\) partículas temos que a energia cinética e o momento são as somas
$$
T = \sum_{i = 1}^N \frac{1}{2} m_i v_i^2, \vec{p} = \sum_{i = 1}^N m_i
\vec{v}_i .
$$

Estas definições de energia e momento são motivadas pelo fato experimental de que a soma das energias, cinética e potencial, e o momento são quantidades que se conservam durante a trajetória de uma partícula ou de um sistema de partículas.

Exercícios

  • Faça um esboço da trajetória em \(I \hspace{-4pt} R^2\) descrita em forma paramétrica por
    $$
    \mathbf{x} \left( t \right) = \left( R \cos \omega t, R \textit{sen} \omega t \right)
    $$
    Mostre que a aceleração, neste caso, é sempre perpendicular á velocidade.
  • Faça um esboço da trajetória em \(I \hspace{-4pt} R^3\) descrita em forma paramétrica por
    $$
    \mathbf{x} \left( t \right) = \left( \cos \omega t, \textit{sen} \omega t,
    t \right) .
    $$
  • Encontre o comprimento da trajetória acima de \(t = 0\) até \(t = 1\).

 

Consequências da invariância da velocidade da luz