Matemática na Idade Moderna


Introdução

O mundo moderno se encontra hoje inteiramente modificado pela ciência e pela tecnologia. As relações entre seres humanos e destes com seu meio ambiente foram profundamente transformadas pelo conhecimento e sua aplicação tecnológica. E, por trás deste conhecimento e em praticamente todos os setores, se encontra a matemática. O conhecimento matemático, mesmo em áreas desenvolvidas a princípio de forma totalmente acadêmica, termina por encontrar aplicação em setores diversos da tecnologia e outras áreas diversas. Por outro lado é comum que a possibilidade de aplicação estimule a evolução do pensamento matemática puro.

O estudo da história da matemática mais recente envolve um número de dificuldades. Apesar de termos hoje uma documentação muita mais farta e elaborada do que as fontes do passado, a ausência de distanciamento histórico impede a avaliação imparcial do fluxo dos acontecimentos. Além disto o passar do tempo e o teste das gerações permite uma filtragem da grande quantidade de material produzido, separando o conteúdo puramente especulativo daquele que frutificou e gerou conseqüências interessantes. Uma dificuldade adicional está na crescente ramificação de todas as disciplinas e na exigência de uma especialização cada vez mais setorizada dos profissionais da área. Se no passado alguns estudiosos brilhantes dominavam diversas áreas do conhecimento e faziam contribuições para diversas delas hoje é bastante difícil que uma pessoa domine por completo uma única área do conhecimento e, mesmo se o fizer, que se mantenha atualizado com todas as evoluções e novas descobertas no seu próprio setor. Especialistas em campos diversos costumam ter dificuldades para se entender e trocar informações. Por outro lado, um grande contingente de pessoas sem formação científica faz uso das aplicações tecnológicas como caixas pretas que elas, nem vagamente, podem entender como funcionam.

(1) Veja a seção sobre o Grupo Bourbaki.

A necessidade de se formar profissionais qualificados em setores extremamente específicos e com grande nível de aprofundamento envolve um desafio para os educadores do presente e do futuro próximo. Como o indivíduo pode obter uma visão equilibrada da sociedade e do mundo se conhece apenas um de seus setores? O ensino da matemática em particular, e das ciências exatas em geral, vem enfrentando sérias dificuldades que precisam ser consideradas e resolvidas. Muitos educadores atribuem as dificuldades à introdução da chamada matemática moderna que motivou, no ensino, um movimento de reforma curricular iniciado em torno da metade do século XX. Professores e pesquisadores perceberam que os avanços obtidos à partir do século XIX não estavam sendo ensinados nas escolas e, por isto, se propuseram a reformar o currículo de forma a fazer chegar estas inovações até os alunos 1. Alguns educadores acreditam, no entanto, que a matemática deste período é demasiado abstrata e voltada para a análise de seus próprios princípios e fundamentos, o que traz dificuldades excessivas para os estudantes. Desta forma eles não conseguem apreender os conceitos modernos e nem dominar as técnicas clássicas da matemática.

Alguns exemplos destas dificuldades podem ser citados. O tratamento formal da teoria de conjuntos passou a ser considerado como base para praticamente todos os cursos de matemática. Outro está no conceito de uma função, originariamente compreendida como uma relação ou regra que associa uma variável independente a uma dependente, \(y=f(x)\) um conceito antigo já utilizado por Galileu e aperfeiçoado, em parte, por Peter Lejeune Dirichlet. Na matemática moderna as funções são vistas como relações entre elementos de um conjunto, um conceito que só foi amadurecido no início do século XX. No caso das funções reais de uma variável, por exemplo, elas representam relações entre pares ordenados de \(\Bbb R^2\).

São válidos, portanto, os esforços atuais para se buscar uma contextualização de conteúdos ensinados na medida em que se progride no aprendizado da abstração. Cabe lembrar, no entanto, que grande parte das aplicações modernas da matemática, seja na ciência pura ou na tecnologia, envolve uma grande quantidade de abstração. Podemos citar a mecânica quântica, base da maior parte dos desenvolvimentos modernos na eletrônica, que faz amplo uso de tópicos sofisticados da matemática tais como as funções de variáveis complexas, as equações diferenciais e suas propriedades de transformação, os espaços vetoriais de dimensões infinitas, e a solução da equação de autovetores e autovalores, entre outros tópicos avançados.

O que é a Matemática

A matemática é o estudo dos conjuntos, abstratos e concretos, suas propriedades e das relações entre os elementos destes conjuntos2. A tendência à abstração, generalizada na matemática, age como um princípio unificador entre conceitos aparentemente diversos e considerados disjuntos. Grosso modo ela pode ser dividida entre pura e aplicada. A matemática pura consiste no uso do raciocínio abstrato baseado em axiomas e a exploração de suas conseqüências. Suas principais divisões são a álgebra, a análise e a geometria. A matemática aplicada consiste em seu uso como linguagem ou ferramenta descritiva de precisão em outros campos do conhecimento tais como a física, química, astronomia, engenharia, economia, estatística, etc.

(2) Conjuntos são objetos fundamentais, não sendo portanto passíveis de definição em termos de outras noções mais elementares. Eles são usados na definição de outros objetos mais complexos. Quando são apresentados de forma informal os conjuntos são tidos como um conceito auto evidente. Em sua apresentação axiomática as propriedades são estabelecidas por meio de axiomas que descrevem suas propriedades.
A linguagem da teoria de conjuntos é baseadas em uma única relação fundamental, a relação de pertinência. Dizemos que um elemento \(a\) é pertence a um conjunto \(A\), (simbolicamente \(a \in A\)) ou, o que é equivalente, que \(A\) contém o elemento \(a\). O conjunto fica determinado pelo agrupamento de todos os seus elementos: dois conjuntos são iguais se possuem exatamente os mesmos elementos. É comum o estudo de conjuntos de números, de pontos, de funções, e muitos outros tipos de elementos. Espaços vetoriais, grupos e variedades são exemplos de conjuntos cujos elementos satisfazem propriedades específicas.

As primeiras noções matemáticas surgiram como abstrações da operação de contar. O progresso do conhecimento se deu principalmente com o surgimento da civilização e do agrupamento humano em áreas urbanas. A evolução posterior se deu, principalmente, devido à necessidade de se medir terrenos, da previsão de estações do ano e da necessidade de localização. Medidas de tempo e de posição, importantes para o planejamento na agricultura e viagens, são ambas obtidas através da observação astronômica. Contribuíram também a busca de construção de armamentos cada vez mais sofisticados e o gerenciamento de mantimentos para as cidades e exércitos. Muitos autores afirmam que a construção de templos e a representação ritual do universo segundo a mitologia vigente também impulsionaram sua evolução, em especial dos aspectos mais teóricos e abstratos. As contribuições mais importantes da antiguidade são atribuídas às civilizações da Mesopotâmia e Grécia, enquanto as culturas egípcia e romana se limitaram a aperfeiçoar as técnicas de medida e a prática aritmética.

Durante o período áureo, na Grécia, a matemática recebeu um grande impulso, principalmente no que se refere à geometria. De inspiração filosófica e menos voltada para utilização pragmática, os gregos lançaram as bases metodológicas da ciência abstrata e da matemática. Esta idade de prosperidade cultural durou até que o império romano se espalhou por todo o ocidente. De mentalidade prática e pouco dada às questões filosóficas os romanos pouco contribuíram para a expansão do conhecimento matemático.

Matemática Ocidental

Com a queda do império romano e a ascensão da igreja romana o mundo ocidental entrou em um longo período de depressão intelectual, a chamada Idade das Trevas, só superada no Renascimento com a redescoberta dos grandes textos clássicos gregos e romanos. Durante os séculos XII a XV a Europa teve acesso à matemática produzida pelos árabes ou por eles apreendidas dos hindus e gregos antigos. O conhecimento recém redescoberto encontrou rápida difusão devida à invenção da imprensa e à formação das primeiras universidades européias.

O século XVII

Descartes, Napier, Newton e Leibniz

Durante o século XVII ocorreu a revolução científica impulsionada pela consolidação da teoria heliocêntrica de Copérnico e pelos avanços propostos por Galileu e Kepler e que, mais tarde, propiciou a ocorrência da revolução industrial. Em 1637, em seu livro Discurso sobre o Método, René Descartes apresentou os fundamentos da geometria analítica através do formalismo que permite a localização de pontos do plano por meio de um sistema de coordenadas, tornando possível, por exemplo, o cálculo de distâncias entre pontos por meio do teorema de Pitágoras. Problemas geométricos são, desta maneira, transformados em problemas algébricos. Em 1614 John Napier apresentou sua definição de logaritmo como operação inversa da potenciação, o que representou um grande progresso nas técnicas de cálculo, úteis principalmente para os longos e tediosos cálculos efetuados pelos astrônomos da época.

(3) Funcionais são funções que tem como argumento outras funções.

Ainda no século XVII, Isaac Newton e Gottfried Wilhelm Leibniz inventaram, independentemente e apoiados sobre os trabalhos de pensadores como Descartes e Fermat, a ferramenta fundamental da matemática como a entendemos hoje: o cálculo diferencial e integral. Apesar do grande avanço havia uma grande lacuna no conhecimento sobre os fundamentos desta disciplina e sua justificação. Em particular estava ausente o conceito de limite só plenamente desenvolvido no século XIX. Muitos matemáticos contribuíram para o aperfeiçoamento do cálculo, entre eles os irmãos Bernoulli e o matemático suíço Leonhard Euler. Euler foi um dos fundadores de duas disciplinas matemáticas: o cálculo das variações e a geometria diferencial. A geometria diferencial consiste na aplicação das técnicas do cálculo diferencial para o estudo das propriedades gerais de curvas e superfícies. O cálculo das variações, retomado por Lagrange a partir de 1760, é a área da matemática que busca generalizar o problema de se encontrar extremos (máximos ou mínimos) de funções para a procura de extremos de funcionais3, que são expressões do tipo
$$I = \int _{a}^b f\left[x,y,\frac{dy}{dx}\right] dx$$

onde \(f\) é função que tem como argumento outra função \(y(x)\) e, possivelmente, da variável independente \(x\). Busca-se encontrar a função \(y(x)\) que extremiza a expressão \(I\), denominada funcional. A solução é dada pela equação de Euler-Lagrange,
$$\frac{\partial f}{\partial y} – \frac{d}{dx}\left(\frac{\partial f}{\partial y’}\right) = 0$$

O século XVIII

As conquistas científicas ocorridas no final do século XVII e início do século XVIII e o progresso social decorrente levaram a um grande movimento de renovação intelectual conhecido com Iluminismo. O Iluminismo foi um movimento cultural e social fundamentado na exaltação da razão, o atributo humano através do qual se pode compreender o universo e aperfeiçoar sua própria condição. Nele se considerava que o objetivo humano era a obtenção do conhecimento, a liberdade e a felicidade. A crítica iluminista logo se voltou contra a tradição e a autoridade daqueles que se julgavam responsáveis por guiar o pensamento dos cidadãos e contra o dogmatismo. A luta contra o dogma se deu, na esfera política, na oposição ao absolutismo monárquico. Alguns reis, percebendo o alcance das novas idéias, apoiaram e estimularam a nova tendência. Os “déspotas esclarecidos”, como ficaram conhecidos, assumiam publicamente o papel de mecenas das artes e das ciências e abrigavam em suas cortes cientistas, artistas e pensadores, geralmente atuando como consultores e tutores de suas crianças. Esse apoio, no entanto, era quase sempre superficial e ditado por conveniências políticas ou estratégicas, não configurando uma aliança real e nem os comprometendo com as reformas.

D’Alembert, Laplace, Lagrange e Monge

Vários matemáticos importantes viveram neste período, entre eles d’Alembert, Laplace, Lagrange e Monge. Jean Le Rond d’Alembert foi um matemático e físico francês que, ao lado de Voltaire, Jean-Jacques Rousseau e Denis Diderot, participou da edição da famosa Encyclopédie, que teve enorme repercussão no século XVIII e lançou as bases culturais de um movimento de renovação que culminou com a revolução francesa, em 1789. D’Alembert nasceu em 1717 em Paris, segundo alguns historiadores filho ilegítimo de uma mãe aristocrata e um general. Sua mãe o entregou à esposa de um vidreiro de poucas condições financeiras. Mais tarde, quando já era um matemático de renome, d’Alembert se recusou a aceitar as tentativas de aproximação de sua mãe biológica, preferindo ser reconhecido como filho do casal de origem humilde que o adotou. Com 22 anos de idade D’Alembert enviou seus primeiros artigos à Academia de Ciências, da qual passou a ser membro em 1741. Nesse mesmo ano publicou sua obra Traité de Dynamique (Tratado de dinâmica), na qual estendeu a lei de ação e reação de Newton aos corpos rígidos. Estes estudos se revelaram particularmente importantes para o projeto e construção de estruturas destinadas a suportar grandes pesos, tais como pontes e grandes coberturas. Ele também fez contribuições importantes para o cálculo infinitesimal, mecânica de fluidos, astronomia e ótica. D’Alembert redigiu para a Enciclopédia o “Discours préliminaire” (prefácio) e diversos artigos sobre as ciências naturais, ensaios filosóficos e artísticos, bem como uma teoria da música. Ele morreu em Paris em 1783, seis anos antes do início da revolução popular.

De 1798 a 1801 Napoleão Bonaparte liderou um a expedição militar ao Egito, acompanhado de vários cientistas. Entre eles estavam os matemáticos Gaspard Monge e Jean-Joseph Fourier, o físico Malus e o engenheiro Nicolas-Jacques Conté. Os franceses se instalaram no Cairo onde Bonaparte criou o Instituto do Egito com a missão de difundir o progresso e o Iluminismo no Egito.

A queda da Bastilha, no dia 14 de julho de 1789, marca o início do movimento revolucionário pelo qual a burguesia francesa, consciente de seu papel preponderante na vida econômica, removeu do poder a aristocracia e a monarquia absolutista. O novo modelo de sociedade e de estado criado pelos revolucionários franceses influenciou grande parte do mundo e, por isso, a revolução francesa representou um importante marco histórico da transição do mundo para a idade contemporânea e para a sociedade capitalista baseada na economia de mercado. A declaração de independência pelos Estados Unidos e a revolução industrial iniciada na Grã-Bretanha são outras duas grandes transformações que marcaram a transição da idade moderna para a idade contemporânea.

Fourier

Durante a revolução francesa e o período napoleônico, surgiu na França uma nova geração de matemáticos, na qual se destacaram Lagrange, Laplace e Fourier, entre outros. Nesta época a maior parte dos matemáticos não estava associado a nenhuma universidade mas sim a instituições eclesiásticas ou militares. Havia ainda aqueles que se encontravam sob a proteção de algum nobre ou davam aulas particulares. Napoleão Bonaparte apreciava a matemática e sabia de sua importância para o gerenciamento das forças armadas e para a estratégia de guerra. Por isto ele estimulou o aprimoramento do ensino fundando a École Polytechnique sob a orientação do matemático Gaspard Monge.

Monge (1746-1818), procurando soluções para problemas ligados à construção de fortificações, desenvolveu os primeiros alicerces da geometria descritiva. Ele também usou o cálculo infinitesimal para determinar a curvatura de uma superfície. Plenamente identificado com os ideais da revolução francesa, Monge recebeu várias atribuições oficiais. Em 1791 integrou o comitê responsável pela implantação do sistema decimal de pesos e medidas e, de 1792 a 1793, foi ministro da Marinha. Participou da criação da École Normale Supérieure e da École Polytechnique onde lecionou geometria descritiva e analítica. Monge era um professor excepcional e suas notas de aulas foram transformadas em livros, Géométrie descriptive e Feuilles d’analyse appliquée à la géométrie, utilizados por muitos anos a seguir.

Outro matemático do período foi Joseph Louis Lagrange (1736-1813), nascido na Itália e naturalizado francês, que se dedicou a estudar a teoria da gravidade de Newton, a mecânica celeste e estabilidade do sistema solar, a teoria dos números, probabilidades e equações diferenciais. Ele também trabalhou sobre problemas algébricos que resultaram, mais tarde, na teoria de grupos desenvolvida por Évariste Galois. Lagrange não se envolveu muito com o tumulto político durante a revolução francesa mas contribuiu para o desenvolvimento das escolas recém criadas. Ele propôs um formalismo sofisticado que trata de modo uniforme as equações do movimento e que permite a solução de problemas complexos de mecânica de forma direta. Seu formalismo é uma aplicação do cálculo variacional proposto por Bernoulli e Euler. Por meio dele se mostra que as equações de movimento de Newton decorrem da minimização de um funcional construído a partir da função, hoje denominada Lagrangeana, definida como a diferença entre a energia cinética e potencial do sistema estudado, \(L=T-V\).

Também Pierre Simon de Laplace (1749-1827) fez contribuições para a matemática, a mecânica e a astronomia e contribuiu para a formação das novas escolas. De origem modesta ele se tornou professor da Escola Militar de Paris em 1769 por recomendação d’Alembert. Em 1773, iniciou a compilação das pesquisas e teorias astronômicas de Isaac Newton, Edmundo Halley e outros célebres cientistas, cujas obras se encontravam dispersas, e buscou explicar as aparentes anomalias das órbitas planetárias. Realizando cálculos minuciosos sobre os efeitos gravitacionais recíprocos de todos os corpos do sistema solar ele descobriu que as órbitas ideais propostas por Newton apresentavam desvios periódicos. Nessa época, concluiu também uma brilhante análise sobre o eletromagnetismo.

(4) Um exemplo é a integral elíptica do primeiro tipo
$$F(k, \phi)= \int _{0}^\phi\frac{d\theta}{\sqrt{1-k^2sen^2\theta}}. $$
(5) A lei da reciprocidade quadrática, mais tarde aprimorada por Gauss, afirma que se \(p\) e \(q\) são primos então há uma relação direta entre \(p\) ser quadrado módulo \(q\) e \(q\) ser quadrado módulo \(p\). Este teorema fornece um algoritmo para determinar se um inteiro \(a\) é quadrado módulo \(p\), sendo \(p\) um primo.

Em Exposition du système du monde (1796; Exposição do sistema do mundo) Laplace explicou a origem do Sol e dos planetas a partir de uma nebulosa. Em Traité de mécanique céleste (1798-1827; Tratado de mecânica celeste), em cinco volumes, fez uma completa interpretação da dinâmica do sistema solar apoiada em ferramentas matemáticas. Seus trabalhos sobre a teoria da probabilidade tornaram-se amplamente conhecidas e respeitadas nos círculos científicos. Por seu apoio à revolução ele foi Ministro do Interior de Bonaparte por seis semanas sendo nomeado s ferramentas básicas para a física matemática, estudou as integrais elípticas4 que surgiam no estudo de comprimentos de arcos e formulou a lei da reciprocidade quadrática 5 (determinação dos divisores para os quais o número dado é resto quadrático). Ele também escreveu quatro dissertações sobre a atração dos esferóides onde estudou a função que hoje leva seu nome e tem grande aplicação em astronomia. Um de seus livros, Éléments de géométrie (1794), foi utilizado por muito tempo como livro texto e, algumas vezes, foi considerado o equivalente moderno dos Elementos de Euclides. Em 1798, publicou Théorie des nombres (Teoria dos números) onde aparece o primeiro estudo sistemático das quadráticas ternárias e se utiliza a lei da reciprocidade quadrática. Contribuiu também para assentar as bases de um dos mais famosos problemas da teoria dos números, o da distribuição dos números primos. Legendre sugeriu em 1808 que o número de primos menores que um inteiro n podia ser dado por
$$\pi(n)\approx \frac{n}{ln n−1,08366}$$

O problema somente foi completamente resolvido em 1896 por Jacques Hadamard e Charles de La Vallée-Poussin, que mostraram estar correta, em primeira aproximação apenas, a suposição de Legendre.

Apesar da importância de sua contribuição logo surgiu uma geração de grandes matemáticos na Europa e seus progressos rapidamente ultrapassaram os obtidos por Legendre. Entre eles estava Gauss, responsável por notáveis avanços na teoria dos números, Abel e Jacobi, nas funções elípticas. Legendre não manteve boas relações com Gauss mas recebeu com entusiasmo as contribuições de Abel e Jacobi, divulgando-as com empenho embora elas representassem a superação de seus prórios trabalhos. Legendre morreu em Paris, em 10 de janeiro de 1833.

Ainda na época da revolução viveu Joseph Fourier (1768-1830), filho de um modesto alfaiate que veio a se tornar um grande matemático. Ainda criança Fourier mostrou talento extraordinário e mais tarde teve participação ativa na revolução, cujos ideais o atraíram para a política. Em 1795 tornou-se professor da recém-criada École Normale e logo da École Polytechnique.

Fourier apreciava o estudo da arqueologia e em 1798 acompanhou Napoleão Bonaparte ao Egito, onde teve a oportunidade de se dedicar a esta pesquisa exercendo a função de secretário do Instituto do Egito, fundado no Cairo por Napoleão. De volta à França ele ocupou cargos públicos importantes e, em 1809, recebeu o título de barão. Com a queda de Napoleão deixou a política e limitou-se à vida acadêmica em Paris como membro de várias sociedades científicas.

Dentro da tradição inaugurada por Galileu e Newton, Fourier usou a observação experimental e a matemática aplicada a problemas físicos. Em sua obra mais notável, Théorie analytique de la chaleur (1822; Teoria analítica do calor), demonstrou que a condução do calor em corpos sólidos pode ser expressa por meio de séries trigonométricas infinitas. As séries de Fourier são aplicadas a um grande número de problemas físicos e matemáticos, inclusive como base das operações em mecânica quântica. Elas representam uma generalização das séries de Taylor desenvolvendo uma função periódica em termos de uma série de senos e cossenos de múltiplos inteiros da variável. Fourier morreu em Paris em 16 de maio de 1830.

O Século XIX

Durante o século XVII e XVIII foram estabelecidas as bases da matemática em sua forma moderna. O século XIX foi um período de intensa pesquisa sobre os fundamentos da matemática e, nesta época, começaram a surgir os jornais devotados à publicação científica e os cursos de formação específica em matemática e ciências. A fundação da École Polytechnique em Paris (1794-5) contribuiu grandemente para a revitalização da geometria, tendência seguida mais tarde por escolas similares em Praga (1806), Viena (1815), Berlim (1820) e muitas outras. Os estudiosos do período começaram a se dedicar aos princípios básicos e fundamentos, como uma reação à aplicação descuidada do cálculo e da geometria cartesiana que era feita nos primeiros tempos, durante o século XVIII. Os principais avanços estavam relacionados às séries infinitas, à teoria dos números, aos conceitos de função, de continuidade e limites. A Teoria das Funções, fundada por Cauchy, Riemann e Weierstrass, seguidas dos avanços sobre geometria descritiva e projetiva, da Teoria dos Grupos das formas e dos determinantes foram outras contribuições de primeira ordem deste período.

Também no século XIX se observou o início da tendência a especialização. Lagrange, Laplace e Gauss, em períodos anteriores, dominavam razoavelmente bem a matemática, a física e a astronomia. Com o surgimento da nova geração, incluindo Carnot, Poncelet, Galois, Abel e Jacobi, a matemática se subdividiu em diversos ramos mantendo relações nem sempre muito claras entre si. É uma tendência bem recente o esforço para se compreender de forma unificada estes ramos, basicamente através da teoria de funções e dos grupos.

As revoluções sociais e políticas ocorridas durante o século anterior favoreceram o crescimento da investigação científica em toda a Europa. Grandes conquistas foram apresentadas neste período, em particular as geometrias não euclidianas e espaços n-dimensionais, álgebras não comutativas, processos infinitos e análises qualitativas. Aos poucos as nações, além da França, passaram a investir em suas instituições de ensino, embora o apoio para a pesquisa em matemática pura continuasse escasso.

Gauss

O matemático mais notável do período foi sem dúvida o alemão Carl Friedrich Gauss (1777-1855). Gauss mostrou desde cedo sua habilidade para a matemática. Conta-se que, quando criança, um professor propôs para sua turma o problema de somar os cem primeiros inteiros, ao que ele teria respondido imediatamente, calculando mentalmente, com a resposta correta: 5050. Supõe-se que ele teria visualizado que a soma procurada corresponde a soma de 50 pares de números, cada um somando 51. Aos dez anos Gauss iniciou seus estudos regulares de matemática surpreendendo os professores pela facilidade com que realizava complicadas operações e aprendia novas línguas. Em 1792 ingressou no Collegium Carolinum onde estudou as obras de Newton, Euler e Lagrange. Durante esta fase da vida ele iniciou suas pesquisas sobre a aritmética superior. Em 1799 Gauss completou seu doutorado pela Universidade de Helmstedt provando, em sua tese, o teorema fundamental da álgebra. Segundo este teorema toda equação polinomial de grau \(n \ge 1\) com coeficientes complexos admite pelo menos uma raiz complexa. É equivalente a se dizer que o polinômio \(P(z)\) de grau \(n\) possui n raízes \(z_{i}\), que são os valores satisfazendo \(P(z_i) = 0\), sendo que algumas destas raízes podem ser degeneradas ou múltiplas.

Gauss era também profundamente interessado pela física e suas relações com a matemática. Em 1801 um astrônomo seu conhecido publicou uma tabela contendo posições orbitais de Ceres, um “pequeno planeta” recém descoberto que era, na verdade, um asteróide. Infelizmente sua trajetória havia sido observada a apenas 9 graus antes que o “planeta” desaparecesse ocultado pelo Sol. Diversos atrônomos publicaram previsões de onde ele deveria reaparecer, sendo que a previsão de Gauss era bastante diferente das demais. Ao ser redescoberto Ceres estava quase exatamente onde Gauss havia predito. Para este cálculo ele usou o método da aproximação dos mínimos quadrados que ele mesmo desenvolvera, embora não tivesse ainda divulgado seu método. O método só se tornou conhecido do público em 1812. Em 1807 ele foi nomeado professor de astronomia e diretor do observatório da Universidade de Göttingen.

(6) Levantamento e representação da forma e da superfície da terra.
(7) Métricas são entidades matemáticas de medição de distância e ângulos em um espaço. O produto escalar ordinário é uma métrica de \(\Bbb R^3\).
(8) Veja adiante o tópico sobre variedades.

Gauss aplicou o método dos mínimos quadrados na solução das distribuições de probabilidade nos campos da mecânica, estatística e economia, e na abordagem da forma das superfícies curvas mediante expressões matemáticas, o que lhe permitiu determinar o tamanho e a forma aproximados da Terra. Os trabalhos de Gauss também se estenderam às áreas da ótica e do magnetismo. Dotado de grande habilidade manual, construiu e aperfeiçoou instrumentos de medição da luz e das distâncias astronômicas, tendo construído um magnetômetro, instrumento destinado a medir a intensidade do campo magnético. Gauss foi conselheiro científico, de 1821 a 1848, dos governos de Hannover e da Dinamarca, e desenvolveu minuciosos estudos de geodésia6, que o levaram a examinar, em toda a sua generalidade, problemas relativos às superfícies curvas e à questão da representação conforme. Ele também fez contribuições notáveis para a teoria dos números, o cálculo das probabilidades, para o método de solução de sistemas de equações lineares que leva seu nome, o método de Gauss-Jordan, para a teoria da potencial e análise real. Gauss morreu em Göttingen em 23 de fevereiro de 1855.

Riemann

A geometria não euclidiana, apresentada por János Bolyai e Nicolai Lobatchevski, foi uma das mais importantes descobertas do período. Gauss foi o primeiro a conceber o conceito de curvas e superfícies como espaços em si mesmo, tendo sido o fundador da geometria diferencial intrínseca, com seu Teorema Egregium. Em meados do século XIX, Bernhard Riemann introduziu um tratamento para a geometria que unificava as tentativas de Bolyai e Lobatchevski e considerava no mesmo formalismo espaços com qualquer número de dimensões. A geometria de Riemann era feita de forma puramente intrínseca, onde a curvatura e outros objetos geométricos podem ser descritos sem qualquer referência a espaços ambientes. Riemann extendeu o conceito de geometria intrínseca de Gauss a espaços de dimensão e métrica7 arbitrárias, o conceito de variedade8. O formalismo e conceitos por ele desenvolvidos influenciaram diretamente a formulação da teoria da relatividade, no século seguinte, por Albert Einstein.

Évariste Galois e Niels Henrik Abel formularam as teorias de grupos, funções e variáveis complexas, enquanto Karl Weierstrass, Richard Dedekind e Georg Cantor definiram formalmente os números irracionais, em 1872. O século XX foi marcado por avanços no campo da topologia e por discussões sobre os fundamentos da matemática, estudados por Bertrand Russell, Alfred Whitehead, David Hilbert e Georg Cantor, entre outros.

Século XX e o Grupo Bourbaki

Com a devastação provocada pela Primeira Guerra Mundial muitos jovens professores e pesquisadores foram mortos ou abandonaram a Europa. Recém graduados em matemática, tais como Dieudonné e Cartan percebiam que não haviam recebido a formação mais atualizada possível da matemática de sua época. Nas palavras de Henri Cartan: “somos a primeira geração pós guerra. Há uma lacuna antes de nós. Temos que começar tudo de novo.”

Nicholas Bourbaki, um personagem fictício mas importante

Em torno do ano de 1935 um grupo de aproximadamente dez amigos, recém graduados da école Normale Supérieure de Paris e encarregados de ensinar nas diversas universidades francesas passou a discutir a validade da forma de apresentação dos textos antigos e resolveu formar um grupo, reunidos sob o pseudônimo de Nicolas Borbaki, para apresentar novos textos e novas abordagens para o ensino da matemática. Faziam parte do grupo diversos matemáticos tais como Henry Cartan, André Weil, Jean Delsarte, Jean Dieudonné e Claude Chevalley que passaram a se reunir em um Café de Paris para planejar sua reforma. Segundo Chevalley o projeto se iniciou de forma bastante ingênua e pouco pretensiosa: basicamente ele pretendiam refazer o livro texto de E. Goursat, utilizado nos cursos de Cálculo Integral e Diferencial. Após alguma discussão eles resolveram que deveriam refazer toda a apresentação da parte essencial, do início ao fim, sem necessariamente acrescentar novidades ou novos resultados, mas estabelecendo uma melhor didática de apresentação.

O nome Bourbaki tem uma origem curiosa, segundo o relato de Weil. Enquanto ele e alguns amigos frequentavam a école Normale houve um convite para que os alunos do primeiro ano comparecessem à uma conferência proferida por um orador, supostamente famoso, que era, na verdade, um estudante mais velho disfarçado com barba postiça e simulando sotaque estrangeiro. O aluno proferiu uma palestra incompreensível, recheada de resultados falsos e absurdos embora se esforçando para torná-los verossímeis. Ao final da palestra ele concluiu com o “teorema de Bourbaki” que, evidentemente, não existia. O grupo adotou o nome, anexando Nicolas como primeiro nome, segundo sugestão da esposa de Weil.

Muitos dos membros permaneceram unidos e em atividade durante toda a sua vida, e sua contribuição ultrapassou de longe sua proposta inicial. Buscando incorporar as novidades da matemática o grupo tinha uma única regra: aposentadoria compulsória aos 50 anos. O grupo Bourbaki pretendia criar ferramentas essenciais para o uso dos matemáticos, de forma logicamente ordenada, iniciando pelos fundamentos e construindo gradualmente todo o edíficio da matemática. E como fundamento ele escolheram a teoria dos conjuntos que foi revisada em um primeiro livro de uma série de seis. O grupo Bourbaki acreditava que as antigas divisões da matemática não mais deveriam ser consideradas válidas e resolveram propor, após muitas discussões acaloradas, os seguintes tópicos e ordenamento para o seu “Éléments de Mathématique”:

  1. Teoria de Conjuntos,
  2. Álgebra,
  3. Topologia,
  4. Funções de uma variável real,
  5. Espaços vetoriais topológicos,
  6. Integração.

Os seguintes tópicos foram considerados essenciais: Álgebra linear e multilinear, topologia básica, grupos de Lie, variedades diferenciáveis e geomeria Riemanniana, entre outros. Segundo Dieudonné eles haviam conseguido uma forma de eliminar os tópicos que não se relacionavam de forma clara com nenhum outro aspecto da matemática.

Logo o grupo Bourbaki se apercebeu da magnitude do projeto proposto. Eles faziam três reuniões anuais que duravam uma ou duas semanas durante as quais trabalhavam nos livros. A regra principal era obter unanimidade em todos os aspectos e qualquer membro podia vetar um ponto específico qualquer e ser exposto. Qualquer membro poderia escrever sobre um tópico escolhido pelo grupo e sua versão preliminar seria lida em voz alta e severamente criticada pelo grupo. Um segundo colaborador escrevia então uma segunda versão procurando atender a todas as sugestões e críticas coletadas durante o primeiro debate. Um capítulo de livro poderia passar repetidamente por este processo até dez vezes antes que o grupo considerasse o texto satisfatório, o que levava a preparação de um livro a durar em média de oito a doze anos. Apesar disto o grupo se manteve ativo por mais de vinte anos, publicando um grande número de volumes.

A maior parte dos membros do grupo lecionava e pesquisava em universidades francesas, onde podiam novos membros recrutar entre os estudantes que demonstravam aptidão para a matemática. Não havia um número fixo de participantes e ninguém era oficialmente substituído por um novo membro. Um estudante podia ser convidado a participar sob forma probatória, sendo cobrado a compreender as discussões e a participar ativamente do processo para sua aceitação definitiva. Apesar de estar entre os maiores matemáticos de sua época o estudante deveria ser capaz de emitir opiniões sobre os tópicos em questão. O grupo produziu livros importantes sob o pseudônimo de Bourbaki e muitos anos se passaram antes que revelassem a identidade dos participantes.

Como conseqüência de tamanho rigor os livros do grupo Borbaki foram os primeiros a exibir uma organização estrita de tópicos e o uso sistemático da apresentação axiomática. Eles sempre buscavam iniciar seu tratamento sobre aspectos gerais tendendo em seguida para os casos particulares, sempre partindo do pressuposto de que a matemática é fundamentalmente simples e que que sempre existe uma resposta otimizada para cada pergunta formulada. Para atingir este fim eles definiram cuidadosamente sua notação e estrutura de apresentação das idéias, tornando os seis livros da coleção “éléments de mathématique”, ordenados de forma bastante organizada e linear. Qualquer referência feita nos livros só poderia ser encontrada em um ponto anterior da apresentação, o que na verdade desagradou alguns leitores e estudantes que reclamaram do “sistema excessivamente rígido, do estilo seco e ausência de referências externas”. Mas, apesar das queixas de alguns, o estilo do grupo teve profunda repercussão sobre a matemática de hoje, particularmente no que se refere ao ensino.

Após o término da preparação dos seis primeiros livros surgiu a questão sobre como o grupo deveria prosseguir em sua atuação. Os membros fundadores, que haviam realizado a maior parte do trabalho, estavam se aproximando da idade de aposentadoria compulsória, decidida pelo próprio grupo. Era chegado o momento de procurar por tópicos mais especializados, o que introduzia a dificuldade em se manter o mesmo estilo estruturado e o envolvimento de todos os membros, já que seria impossível conseguir que todos participassem em condições de igualdade. Apesar das dificuldades o grupo continuou produzindo textos. Em sua segunda série dois livros, Álgebra Comutativa e Grupos de Lie, foram publicados e bem recebidos pela comunidade acadêmica. Pelo final da década de setenta a proposta e métodologia do grupo Bourbaki havia sido bem assimilada e aceita, e muitos autores já estavam seguindo a mesma orientação. A tentativa de se manter o mesmo formato rígido tornou difícil para o grupo trabalhar sobre as disciplinas novas e o grupo se viu sem motivação para continuar sua tarefa. Para complicar a situação o grupo se viu envolvido em longas disputas judiciais travadas com as editoras sobre os direitos de tradução e publicação. Em 1983 Bourbaki publicou seu último volume: Teoria Espectral.

Como já foi mencionado, a proposta de trabalho do grupo Bourbaki e o estilo de apresentação era muito eficiente e influenciou toda a literatura matemática posterior, sendo que grande parte de sua notação e vocabulário permanece em uso até o presente. O grupo Borbaki foi o responsável pela adoção do símbolo \(\emptyset\) para representar conjuntos vazios, os símbolos \(\Bbb N, \Bbb Z, \Bbb Q, \Bbb R, \Bbb C\) significando os conjuntos dos naturais, inteiros, racionais, reais e complexos respectivamente, da seta \(\Rightarrow\) para indicar a implicação e a adoção das palavras injetora, sobrejetora e bijetora para se referir à aplicações ou funções. Partiu deles a escolha da teoria dos conjuntos para iniciar o estudo da matemática o que teve reflexos profundos na estrutura do ensino no mundo todo. A influência do grupo foi particularmente forte entre os matemáticos brasileiros que, por um longo período, foram profundamente influenciados pela escola francesa.

Disciplinas Matemáticas

Em sua evolução histórica, a matemática experimentou uma progressiva diferenciação em áreas. Entre as mais importantes estão a aritmética, a geometria, a álgebra, a análise matemática – que engloba o cálculo diferencial e integral –, a trigonometria, a teoria dos conjuntos, a probabilidade e a estatística.

A Aritmética é o estudo do número, suas propriedades e as operações que com ele se podem efetuar. A progressiva expansão da noção de número – do conjunto de números naturais para os inteiros, racionais, reais e complexos – definiu de certa forma o surgimento de outras disciplinas da matemática, como a álgebra e a teoria de conjuntos.

A Álgebra é a disciplina que estuda as relações entre números por intermédio de expressões simbólicas gerais. A álgebra surgiu a partir da aritmética, no estágio inicial de evolução da matemática, provavelmente na Babilônia, quando foram criadas as equações e os métodos para reduzi-las. No século XVI, várias iniciativas se tomaram no sentido de simplificar a representação de fórmulas algébricas, mas atribui-se a François Viète a primeira sistematização de uma linguagem de sinais algébricos.

Em 1591, no livro Isagoge in artem analyticam (Introdução à arte analítica), Viète empregou vogais para denotar incógnitas, e consoantes para as grandezas constantes. As potências de um número A eram assim escritas: Aq (quadrado), Ac (cubo) e Aqq (duplo quadrado). Foi Descartes quem primeiro usou as letras x, y e z para as incógnitas, e a, b e c para as constantes, e quem empregou expoentes em potências. A solução de sistemas de equações lineares por meio de matrizes e determinantes parece ter sido idéia de Leibniz, mas o primeiro tratamento sistemático da teoria dos determinantes deve-se a Alexandre-Théophile Vandermonde, em 1771, e Pierre-Simon Laplace, em 1772.

Melancolia I é uma gravura de 1514 pelo mestre Albrecht Dürer. Diversas referências são feitas ao conhecimento matemático, como um “quadrado mágico” 4 × 4, com as duas células centrais da linha inferior mostrando a data da gravura, 1514, um romboedro com um crânio humano sobre ele. Aparecem também uma bússola, uma régua e uma ampulheta.

A Geometria é a mais antiga disciplina matemática, se ocupando do estudo das propriedades do espaço. Na Babilônia, a geometria se dedicou preferentemente à resolução dos problemas de triângulos retângulos. Os estudos babilônicos influenciaram os geômetras gregos, que tiveram nos Elementos de Euclides a melhor expressão de suas teorias. A geometria de Euclides se baseou no estudo do volume das figuras geométricas de revolução (esferas, cilindros, cones) e das regras de paralelismo e proporcionalidade.

Boole

Com o emprego dos métodos analíticos de Descartes na geometria, a partir do século XVII, as expressões geométricas passaram a ser traduzidas em expressões algébricas. O século XIX assistiu ao surgimento de geometrias não euclidianas, como as de Lobatchevski e de Bolyai, baseadas em premissas de não proporcionalidade, espaços curvilíneos, distorção de distâncias etc. A geometria euclidiana, por essa razão, costuma ser denominada geometria plana, para distingui-la das geometrias parabólicas e hiperbólicas que se aproximam mais da concepção moderna do mundo e do espaço. A topologia, ramo mais novo e mais sofisticado da geometria, se encarrega do estudo das propriedades de figuras geométricas que subsistem a deformações contínuas.

Cantor

A Análise Matemática consiste em um conjunto de processos e teorias gerais que incluem a teoria dos números e dos conjuntos, a teoria das funções, o estudo das equações diferenciais e integrais, o cálculo das variações, a teoria das séries e integrais de Fourier e os aspectos puramente algébricos da teoria do potencial, da probabilidade e da estatística, entre outros. Entre as principais disciplinas da análise está a teoria das séries – que analisa as sucessões de números reais e complexos – e o cálculo diferencial e integral. O progresso da análise deu origem a novos campos da matemática, como a análise harmônica, a tensorial e a combinatória, que levou ao cálculo das probabilidades.

Os estudos dos matemáticos George Boole e Georg Cantor conduziram a uma nova interpretação da matemática, baseada nas relações lógicas e na noção de conjunto ou coleção de termos que mantêm uma relação qualquer entre si. Essa disciplina deu origem à matemática moderna e determinou a formação de toda uma série de termos singulares, tais como aplicações, correspondências, relações, que não tinham sido empregados antes em matemática.

Pierre de Fermat

O cálculo das probabilidades surgiu de estudos sobre os jogos de azar realizados, no século XVII, por Pascal, Fermat, Huygens e Jakob Bernoulli. Em 1662, John Graunt analisou estatisticamente a mortalidade humana e, em 1693, Edmund Halley mostrou como calcular anuidades de seguros de vida a partir de quadros de mortalidade. No século seguinte, a teoria dos erros de Laplace, Legendre e Gauss forneceu recursos para empregar a estatística nas finanças públicas, na saúde pública e em outros campos. No século XX, com a evolução da física quântica, a estatística passou a ser um instrumento de inestimável valor para a teoria atômica. Em meados do século, a visão determinista da natureza começou a ser substituída por uma visão probabilística. A influência progressiva da informática na vida cotidiana tende a aumentar a importância prática das teorias de probabilidade e estatística.

Quatérnions

Rowan Hamilton

Quatérnions são entidades relacionadas de perto com os números complexos. Argand, além de apresentar o conceito da representação geométrica dos complexos, tentou, sem sucesso, extender seu método a espaços com mais de duas dimensões. Coube a William Rowan Hamilton na Irlanda em 1843 a descoberta dos quatérnions, uma extensão dos conceitos de Argand. Um quatérnion é uma extensão não-comutativa dos complexos, obtida ao se acrescentar ao conjunto dos reais os elementos \(i, j, k\) satisfazendo as relações
$$i^1=j^2=k^2=ijk=-1.$$
Estes elementos são multiplicados da seguinte forma
$$ij=k,\, jk=i,\, jk=i,\, ki=j,\, ji=−k,\, kj=−i\, \text{e}\, ik=−j,$$

e cada quatérnion sendo a a combinação linear real dos quatérnions unitários 1,i,j e k, i.e., pode ser escrito como \(a+bi+cj+dk\). A adição é feita como nos complexos, pela adição dos termos correspondentes. Como espaço vetorial sobre os reais os quatérnions tem dimensão 4, enquanto os complexos tem dimensão 2.

A descoberta foi recebida com incredulidade no início, principalmente devido à necessidade da introdução de uma álgebra não comutativa. Entre o público leigo da época houve uma certa comoção pois o abandono de uma lei simples da álgebra, como a comutatividade, parecia minar os fundamentos da matemática e do conhecimento científico como um todo. Apenas dez anos mais tarde Hamilton publicou seu texto Lectures on Quarternions, seguido em 1866 por Elements of Quaternions.

No mesmo ano da publicação inicial de Hamilton, Grassmann apresentou seu trabalho que continha muito em comum com a teoria dos quatérnions. Hermann Günther Grassmann (1809 – 1877) foi um matemático e físico com amplos interesses que, no entanto, teve dificuldades para ver consagrados os seus esforços. Seu livro, Geometrische Analyse, foi apresentado como único candidato a um prêmio oferecido para quem elaborasse um sistema de cálculo geométrico independente de coordenadas, tendo sido considerado vencedor em 1846. A contribuição de Grassman é uma das grandes responsáveis pelo formalismo moderno independente de coordenadas utilizado na Geometria Riemanniana.

Grassmann submeteu sua tese de doutorado em 1862, que deveria ser analisada por Ferdinand Moëbius. Este, no entanto, não se julgou habilitado para fazer o julgamento, repassando o documento para Ernst Kummer que rejeitou a tese sem ter feito uma análise mais profunda. Grassmann recebeu o título de professor de nível médio, tendo permanecido no ensino por algum tempo. Mais tarde, desapontado com a difuldade de aceitação de suas idéias se voltou para o estudo da linguistíca, tendo feito importantes contribuições na área e recebendo o título honorário de doutor pela University of Tübingen em 1876. A álgebra de Grassmann é introduzida sobre elementos de um espaço vetorial \(V\) com a adoção de uma operação totalmente anticomutativa representado pelo símbolo \(\land\), o produto exterior, satisfazendo
$$ u\land u = 0 \quad \forall u \in V, $$
$$ u\land v = -v \land u, \quad \forall u, v \in V. $$
O produto exterior é uma generalização do produto vetorial definido sobre vetores do \(\Bbb R ^3\).

Teoria dos números

(9) As formas quadráticas, por exemplo, são polinomiais em várias variáveis.

A Teoria dos números, tópico favorito na Grécia antiga, viu seu renascimento nos séculos XVI e XVII, em especial através dos trabalhos de Viète e Fermat. Mais tarde Euler e Lagrange contribuiram para seu aperfeiçoamento e, finalmente, Legendre (1798) e Gauss (1801) colocaram a disciplina em sua forma moderna. Ela está dirigida para o estudo dos inteiros, em particular dos primos, das congruências, dos resíduos, da lei de reciprocidade e das formas9, e no estudo dos números complexos. A teoria dos primos atraiu a atenção de diversos pesquisadores durante o século XIX, embora a maioria dos resultados iniciais tenham sido de caracter particular e não geral. Tchébichef (1850) foi o primeiro a fornecer resultados importantes sobre o número de primos existentes dentro de determinado intervalo. Um pouco mais tarde Riemann (1859) obteve uma fórmula para o limite dos primos menores ou iguais a um certo inteiro.

Leonhard Euler

Gauss foi o responsável pela introdução da Teoria das Congruências. Ele foi o primeiro a usar a notação \(a\equiv b\pmod m\) para representar \(m \mid (a−b)\) e explorar a maior parte deste assunto. Legendre foi outro importante estudioso do campo, tendo feito uma compilação completa do trabalho de seus predecessores e propondo a teorema da lei da reciprocidade dos resíduos quadráticos e provando sua validade para alguns casos especiais. Sem conhecer estes trabalhos, em 1875 Gauss redescobriu e demonstrou o teorema para o caso geral. Mais tarde a teoria foi extendida pelo próprio Gauss e por Jacobi, para incluir a reciprocidade cúbica e biquadrática.

Também a Gauss se deve a representação de números por meio de formas binárias quadráticas. Cauchy, Poinsot (1845), Lebesque (1859, 1868) e Hermite fizeram novas contribuições a este tópico. Eisenstein e Smith trabalharam sobre a teoria das formas ternárias e sobras formas em geral. Eles também se dedicaram à representação de números como somas de quadrados de 4, 5, 6, 7 e 8.

O último teorema de Fermat foi provado em outubro de 1996 pelo matemático inglês Andrew Wiles.

Na Alemanha um dos estudiosos mais dedicados à teoria dos números foi Dirichlet, o primeiro a ensinar este tema em uma universidade daquele país. Euler e Legendre já haviam trabalhado sobre o teorema de Fermat mostrando que não existem trios de inteiros satisfazendo \(x^n + y^n = z^n\) para n = 3, 4. Dirichlet mostrou que, para qualquer \(x,y,z\) e \(a\) inteiros vale \(x^5+y^5 \neq az^5\). Outros autores importantes na Alemanha foram Kronecker, Kummer, Schering, Bachmann e Dedekind. Na França as contribuições principais partiram de Borel, Poincaré, Tannery e Stieltjes.

Números Irracionais e Transcendentes

A plena aceitação dos números negativos só se deu durante o século XVI. No século XVII se desenvolveu a notação utilizada hoje para representação das frações decimais. Mais tarde, já no século XVIII, os números imaginários se estabeleceram como ferramentas importantes, principalmente através do trabalho de De Moivre e Euler. Restou para os matemáticos do século XIX o aperfeiçoamento da teoria dos números e funções complexas e a discriminação dos irracionais, demonstrando que eles se separam entre números algébricos e transcendentes. Vale notar que o estudo dos irracionais permanecia em estado praticamente de suspenção desde a época de Euclides. Durante o ano de 1872 foram publicadas as teorias de Weierstrass, Heine, Cantor e Dedekind. Weierstrass, Cantor e Heine usaram as séries infinitas como base de sua teoria, enquanto Dedekind introduziu o conceito de corte no sistema dos números reais, separando os irracionais em dois grupos com características próprias.

(10) Pode ser colocado em relação biunívoca com os naturais.
(11) O conceito de ordens do infinito foi estabelecido por Cantor.
(12) A função \(\Gamma (x)\) é definida através da expressão:
$$\Gamma (x) = \int_0^\infty t^{x-1} e^{-t}dt, x \gt 0.$$
Ela generaliza o conceito de fatorial uma vez que \(\Gamma (n+1) = n!\), para \(n\) inteiro.

Um número irracional é algébrico se for a solução de uma equação polinomial na forma de
$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 = 0,$$
onde \(n \ge 1\) e os coeficientes \(a_i\) são inteiros ou racionais, não todos nulos. Caso contrário, se o irracional não for solução de nenhum polinômio desta forma, ele é transcendental. O conjunto dos números algébricos é numerável10, enquanto o conjunto dos reais é inumerável. Isto implica em que os trancendentais são também inumeráveis e, embora existam inifinitos algébricos existe uma quantidade ainda maior11 de transcendentais. Não existem critérios definitivos para se mostrar que um número é transcendente, o que pode ser uma tarefa bastante difícil de realizar. Alguns exemplos já demonstrados de números transcendentais são: \(e, ea\), se \(a\) é algébrico não nulo, \(\pi, e\pi, 2\sqrt 2, sen(1) ln(b) \), se \(b\) é positivo, racional e diferente de 1, \(\Gamma (\frac{1}{3})\) e \(\Gamma (\frac{1}{4})\) (nota 12).

O primeiro a perceber a existência dos números irracionais transcentes foi Kronecker. Lambert provou em 1761 que \(\pi\) não é racional e que \(e^n\) é irracional se \(n\) é racional. Sua demonstração, no entanto, não foi considerada completa. Legendre (1794) completou a demonstração mostrando que \(\pi\) não é o quadrado de um racional. Mais tarde Liouville (1844, 1851) mostrou a existência de números transcendentes e uma demonstração completa foi apresentada por Cantor em 1873. Hermite (1873) provou primeiro que \(e\) é transcendente e Lindemann (1882), partindo do trabalho de Hermite, mostrou o mesmo para o número \(\pi\). As provas de Lindemann foram bastante simplificadas por Weierstrass (1885) e Hilbert (1893), e mais tarde apresentadas de forma bastante elementar por Hurwitz e Gordan.

A descoberta dos números transcendentais permitiu a solução de vários problemas antigos na geometria, em especial de que a quadratura do círculo é impossível por meio exclusivo de régua e compasso, porque \(\pi\) é transcendental.

Teoria das Equações

A Teoria as Equações se dedica à localização de raízes, exatas ou por meio de aproximações. Já no século XVII Budan e Fourier fizeram contribuições neste campo, mas os métodos envolvidos eram excessivamente trabalhosos. Em 1829 Sturm comunicou à Academia Francesa seu famoso teorema que representa uma das descobertas mais brilhantes da análise algébrica.

A localização aproximada de raízes pode ser efetuada por vários métodos. Newton elaborou um método mais tarde aperfeiçoado por Fourier. Horner desenvolveu o método comumente usado até hoje para raízes reais, enquanto o tratamento de raízes complexas permanece não completamente desenvolvido.

O Teorema Fundamental, afirmando que toda equação numérica tem uma raíz, foi usada por algum tempo antes que sua demonstração fosse dada, primeiro por D’Alembert (1746), depois por Lagrange (1772), Laplace (1795), Gauss (1799) e Argand (1806). A afirmação geral de que cada equação algébrica de grau \(n\) tem exatamente \(n\) raízes decorre da proposição de Cauchy (1831) sobre o número de raízes dentro de um contorno dado. Também existem provas encontradas por Gauss, Serret, Clifford (1876) e outros.

Gauss percebeu a impossibilidade de se encontrar uma expressão para as raízes de equações algébricas com grau maior que 4, uma percepção que se fortaleceu com o fracasso do método de Legendre para estes casos. A primeira prova completa deste teorema, no entanto, só foi obtida por Abel (1802–1829), um matemático norueguês que, embora tendo morrido de tuberculose muito jovem foi considerado um dos maiores matemáticos de seu século. Os grupos comutativos recebem também o nome de grupos abelianos em sua homenagem.

A Teoria Moderna das Equações é basicamente devida a Abel e Galois. Evariste Galois foi um matemático francês que, já aos 17 anos, desenvolveu conceitos originais no campo da álgebra, da teoria dos números e teoria dos grupos. Galois foi o primeiro a usar a palavra grupos para representar as permutações possíveis sobre um conjunto de elementos. Galois escreveu um documento sobre a teoria das equações mas nunca conseguiu publicá-lo em vida. Sua argumentação parecia insuficiente para os demais matemáticos da época, tais como Cauchy e Poisson. Hoje a teoria de Galois representa um dos ramos principais de estudo da Álgebra Abstrata.

Niels Henrik Abel

Galois era um republicano fervoroso e se viu envolto em diversos problemas por causa disto, o que leva alguns historiadores a concluir que sua morte em um duelo pode ter sido planejada por motivos políticos. Na noite anterior ao duelo, supostamente travado em defesa da honra de uma mulher, ele foi convencido de que tinha poucas chances de sobrevivência e passou toda a noite escrevendo cartas para amigos republicanos, buscando transferir seus conhecimentos e idéias sobre a matemática. No último dos artigos ele delineia os princípios mais importantes sobre um tema no qual vinha trabalhando e anexa cópias de artigos submetidos e não aprovados. Durante o duelo ele foi atingido no estômago, morrendo no dia seguinte.

As tentativas fracassadas para se resolver equações do quinto grau por meio de radicais levou os matemáticos a procurar outras formas de expressão destas soluções. Em 1858 Hermite mostrou a possibilidade de se obter uma solução usando funções elípticas. Kronecker, Klein e vários outros fizeram contribuições para a obtenção de soluções por meio de funções hiper-elípticas.

Equações binomial, aquelas que podem ser reduzidas à forma \(x^n -1 = 0\), admitem pronta solução através do uso dos complexos. As raízes enésimas da unidade são
$$ z_n = \cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n}, k =0, 1, \ldots, n-1,$$
n raízes distintas, uniformemente distribuídas sobre o círculo unitário \(|z|=1\). Coube a Gauss, no entanto, mostrar que uma solução algébrica é possível. Lagrange (1808) extendeu a teoria e explorou suas aplicações à geometria, sendo esta uma das principais contribuições do sécula XVII para a matemática. Abel generalizou os resultados obtidos por Gauss para o tratamento das chamadas equações binomiais, do tipo \(\sum_{0}^{n-1} x^m = 0\).

Algumas equações especiais, importante para o estudo da geometria, foram tratadas por Hesse, Steiner, Cayley, Clebsch e Kummer. São equações do nono grau determinando os pontos de inflexão de uma curva do terceiro grau, além da determinação dos pontos destas curvas que podem ter contato de quinta ordem com cônicas. Funções que exibem simetrias sob permutações de algumas ou todas as suas raízes são particularmente importantes na teoria moderna e as descobertas de Galois certamente revelaram a importância destas simetrias.

Equações Diferenciais

A Teoria das Equações Diferenciais foi considerada por Sophus Lie como a parte mais importante da matemática moderna. Elas são equações que envolvem uma função desconhecida de uma ou mais variáveis, e suas derivadas. Para uma função real de uma única variável, \(y = y(x)\), podemos expressar estas equações em forma geral como \(F\left(x, y, y’, y”, y^{(n)}\right) = 0\) onde usamos a linha para expressar a derivação. As equações que envolvem derivadas em apenas uma variável são chamadas equações diferenciais ordinárias. Caso contrário, equações que envolvem derivadas em mais de uma variável são chamadas de equações diferenciais parciais. Um exemplo de equação parcial é a equação de onda


$$\frac{\partial ^2 \phi(x,t)}{\partial x^2} = \frac{1}{c^2} \frac{\partial ^2 \phi(x,t)}{\partial t^2} $$
onde \(c\) é uma constante que surge da integração da equação. Pode-se mostrar que \(c\) é a velocidade de propagação da onda. A ordem de uma equação diferencial é igual a derivada de maior ordem que nela aparece.

As aplicações desta disciplina na geometria, física e astronomia, especialmente as equações diferenciais parciais lineares com coeficientes constantes, sempre foram percebidas, desde Newton e Leibniz. Como resultado muitos matemáticos trabalharam nelas, passando pelos irmãos Bernoulli, Riccati, Clairaut, d’Alembert e Euler. O primeiro método geral de solução das equações diferenciais ordinárias lineares com coeficientes constantes é devido a Euler. Ele mostrou que a equação linear
$$a_2 y” + a_1 y’ + a_0 y =0$$
pode ser resolvida através da substituição \(y = \exp^{rx}\), o que reduz a que reduz a equação acima a uma outra apenas algébrica, a chamada equação característica
$$F(r)=a_2 r^2 + a_1 r + a_0 =0.$$

Sophus Lie

O estudo das equações diferenciais parciais se iniciou com Lagrange (1779 a 1785). Também Monge (1809) estudou equações ordinárias e parciais de primeira e segunda ordem aplicando-as à geometria. Pfaff (1814, 1815) foi o responsável pelo primeiro método de solução de equações parciais de primeira ordem, método que foi logo reconhecido e estudado por Gauss (1815). Um pouco depois Cauchy (1819) encontrou um método mais simples, usando a equação característica de Monge. Também a ele se deve a afirmação de que toda equação diferencial define uma função que pode ser expressa por meio de uma série convergente, o que foi mais tarde demonstrado por Briot, Bouquet e Picard (1891).

(13) O trabalho mais importante de Frobenius foi, no entanto, associado ao desenvolvimento da teoria de grupos.
(14) Isto é, com a mesma forma.
(15) A transformada de Laplace de uma função \(f(t)\) é definida como
$$L\{f(t)\} = \int_0 ^\infty (t) \exp ^{-st}dt.$$

A teoria das equações parcias de ordem superiores, introduzida por Laplace e Monge, recebeu de Ampère (1840) contribuições importantes. A solução de equações diferencias nas proximidades de um ponto singular foi elaborada por Frobenius13. Em torno de 1870 Sophus Lie apresentou seus resultados sobre equações de primeira ordem, estabalecendo uma fundamentação sólida para a teoria. Lie mostrou que os grupos contínuos formados pelas transformações de coordenadas que deixam uma equação invariante14 servem para a classificação destas equações e que equações que admitem as mesmas transformações apresentam as mesmas dificuldades de solução.

Uma contribuição importante para o estudo das equações diferenciais, apsear de não imediatamente reconhecida pela comunidade dos matemáticos devido a sua falta de rigor, foi feita por Oliver Heaviside. Heaviside estudou a teoria eletromagnética de Maxwell aletrando seu formalismo original baseado em quatérnios, para a terminologia moderna do cálculo vetorial. desde forma ele pode reduzir as vinte equações originais, com vinte incógnitas, para as quatro equações vetoriais que hoje estudamos. Entre 1880 e 1887 ele desenvolveu o cálculo operacional e o uso da transformada de Laplace15 para reduzir equações diferenciais a equações algébricas de solução muito mais simples. Como vantagem adicional seu formalismo permite o tratamento de sistemas com entradas descontínuas e é extensamente usado na engenharia, especialmente na eletrônica e no tratamento de sinais. Contra seus críticos Heaviside argumentava que a ausência de uma fundamentação formal rigorosa não deveria impedir o uso e o desenvolvimento de um teoria.

As equações lineares são, de longe, melhor conhecidas e bem estudadas que as não lineares. No entanto muitos fenônenos naturais importantes são descritos por equações não lineares. As equações diferenciais não lineares representam uma área de pesquisa aberta em matemática e muitos resultados interessantes têm sido obtidos na atualidade. Em particular a pesquisa moderna se volta para a consideração dos sistemas de equações diferenciais não lineares, que podem exibir comportamentos surpreendentes. Uma de suas características importantes consiste na dependência muito sensível das condições iniciais propostas, o que gera comportamentos às vezes imprevisíveis que têm sido denominados de caos. Um exemplo é o do sistema de Lorenz, composto por três equações acopladas

$$x′=a(y−x);\quad y′=x(b−z)−y;\quad z′=xy−cz$$

onde as variáveis x, y e z deveriam representar originalmente características atmosféricas e a = 10, b = 28,c = 8/3, proposto como uma modelagem para condições meteorológicas.

(16) O movimento de dois corpos pode ser resolvido de forma exata. Equações que envolve mais de dois corpos não tem solução analítica.

Outro exemplo importante de sistema não linear é o sistema de equações que descreve o movimento de muitos corpos16, por exemplo na descrição do movimento planetário no sistema solar. Um dos matemáticos importantes a trabalhar no problema foi Henry Poincaré (1854 – 1912), também físico e filósofo da ciência. Em seu trabalho sobre o problema de 3 corpos ele foi a primeira pessoa a descobrir o comportamento caótico das soluções. Em 1885 Oscar II, rei da Suécia, anunciou uma competição matemática com um prêmio em dinheiro para quem demonstrasse a estabilidade do sistema solar. Poincaré apresentou uma solução que ele considerava correta e recebeu o prêmio. Mais tarde um erro foi descoberto mas o prêmio foi mantido. Poincaré havia mostrado que pequenas perturbações ou variações das condições iniciais poderia se proagar gerando grandes diferenças na previsão das órbitas no futuro. Nas palavras de Karl Weierstrass, “embora seu trabalho não possa ser considerado como solução completa do problema proposto ele é de tamanha importância que sua publicação vai inaugurar uma nova era na história da mecânica celeste”.

Henri Poincare

O estudos das equações e sistemas não lineares, de fato, representa uma mudança profunda, não apenas para a mecânica celeste mas para o entendimento da natureza em geral. A maioria dos fenômenos naturais exibem comportamentos não lineares, tais como o fluxo rápido da água de uma correnteza ou a troca de calor entre partes de um organismo vivo. Devido às dificuldades deste estudo até recentemente tudo o que se podia fazer era estudar os casos lineares ou aproximações lineares de sistemas caóticos. É de se esperar, portanto, que o grande esforço que vem sendo feito nesta área frutifique em praticamente todas as áreas de aplicação.

Teoria de Grupos

Um conceito extremamente importante desenvolvido na matemática moderna, em especial como conseqüência do trabalho de Galois é o de grupos. Um grupo é um conjunto \(G\) dotado de uma operação \(\cdot\) satisfazendo as seguintes propriedades:

  1. Se \(x, y \in G \Rightarrow x \cdot y \in G \) (fechamento)
  2. Se \(x, y, z \in G \Rightarrow x \cdot (y \cdot z) = (x \cdot y) \cdot z \) (associatividade)
  3. Existe um elemento \(e \in G\) tal que \( e \cdot x = x \cdot e = x \) (existência da identidade)
  4. Para cada elemento \(x \in G\) existe um elemento \( u \in G \text{satisfazendo } x \cdot u = u \cdot x = e \) (existência do inverso)
Evariste Galois

Historicamente a teoria dos grupos se deriva de três frentes de estudo: a teoria das equações algébricas, a teoria dos números e a geometria. Euler, Gauss, Lagrange, Abel e Galois foram os principais pesquisadores envolvidos com sua elaboração. A procura de raízes para equações de grau \(n\) foi um dos precursores desta teoria, sendo que alguns casos mais simples já haviam sido tratados desde a época de Hudde, no século XV. A elaboração da teoria abstrata dos grupos foi um processo lento. Galois definiu um grupo em 1832 mas suas idéias foram recebidas com relutância pela comunidade acadêmica e seu artigo só foi publicado em 1846 por Liouville. Galois usou amplamente o conceito de grupos em seus artigos mas não forneceu uma definição formal, o que de certa forma explica a dificuldade que Poisson e outros tiveram para aceitar os novos conceitos.

Em 1845, antes da publicação dos artigos de Galois por Liouville, Cauchy apresentou uma definição. Ele tratou das substituições que podem ser aplicadas sobre \(n\) letras \(x_1, \ldots, x_n\), e definiu as permutações como operações que podem ser obtidas por meio de um número finito destas substituições, em qualquer ordem. Ao conjunto de todas as permutações ele denominou “sistema conjugado de substituições” e, por algum tempo esta denominação foi usada juntamente com a expressão grupo. Em 1863 Jordan escreveu um comentário sobre a obra deixada por Galois, utilizando a palavra grupo, que se tornou padrão desde então.

(17) Hoje existe controvérsia sobre a necessidade deste axioma pois, segundo alguns autores, o fechamento é uma consequência da definição de uma operação binária.

Não existe concordância completa entre os historiadores sobre quanta influência Cauchy recebeu de Galois. Sabe-se que Cauchy leu os artigos submetidos à Academia e, embora não os tendo compreendido ou aceitado plenamente e, não havendo ali uma definição explicíta de grupos, ele deve ter sido por eles influenciado. Ambos os autores definiram grupos em termos de suas propriedades de fechamento18, enquanto que os axiomas da associatividade, existência da identidade e da inversa não apareciam. Ambos tratavam de permutações onde apenas é fechamento é suficiente para a definição de grupo. Por outro lado Cauchy também havia mantido correspondência e lido artigos de Ruffini onde o conceito de grupos aparece claramente, embora não explicitamente definido.

A primeiro matemático a apresentar uma definição formal e abstrata de grupos foi Cayley, em artigos escritos entre 1854 e 1878. No primeiro deles ele apresenta a definição em termos do símbolo \(\Theta\) que opera sobre os elementos \(x, y, \ldots \), resultando em
$$ \Theta(x, y, \ldots) = (x’, y’, \ldots),$$

onde \((x’, y’, \ldots)\) são funcões quaisquer de \((x, y, \ldots)\). Em seguida ele define a operação \(1\), que deixa os elementos inalterados, e a operação resultado da operação primeiro por depois por Cayley também faz a exigência de que a associatividade seja respeitada, e ainda observa que não é necessário que sejam iguais as operações e Ele não foi totalmente bem sucedido em sua tentativa porque a associatividade vale sempre para operadores, assim como para permutações, e não é claro que as funções de permanecerão como membros do sistema original. Em 1878 Cayley escreveu que “um grupo é definido pela lei de composição de seus membros”, conceito adotado por Burnside e outros, que aperfeiçoaram a definição até sua apresentação moderna. É interessante notar que nem Cayley nem Burnside exigiram que seus grupos fossem finitos.
Em 1870 Kronecker forneceu uma definição de grupo em um contexto totalmente diferente, no contexto da teoria dos números algébricos. Outros matemáticos a contribuir com o desenvolvimento da teoria foram Weber, Burnside, Kronecker e Schur, entre outros.

O estudo dos grupos contínuos, hoje conhecidos como grupos de Lie, foi iniciado de forma sistemática em 1884 por Sophus Lie, seguido pelos trabalhos de Killing, Study, Schur e Maurer. Marius Sophus Lie (1842 – 1899) foi um matemático norueguês que trabalhou sobre a teoria das simetrias contínuas e aplicou este conceito ao estudo das estruturas geométricas e das equações diferenciais. Sua principal realização foi a descoberta dos grupos de transformação contínuos, hoje chamados grupos de Lie.

Um grupo de Lie é uma variedade cujos elementos são também elementos de um grupo sob as operações definidas sobre o conjunto. Grupos de Lie são importantes na análise matemática, na geometria e na física sendo a ferramenta básica para a descrição de estruturas analíticas e suas simetrias.

Emmy Noether

Os grupos discretos receberam contribuições de Felix Klein, Lie, Poincaré e Piccard. Outros matemáticos importantes na área foram Emil Artin, Emmy Noether, Sylow e vários outros. A teoria de grupos é utilizada praticamente em todas as áreas da matemática, representando um conceito com grande poder de simplificação e unificação de conceitos aparentemente disjuntos. Além disto ela tem aplicações importantes na física e nas diversas outras áreas da ciência, muitas vezes para representar as simetrias exibidas nos sistemas estudados, na forma de grupos. Uma simetria interna qualquer de uma estrutura está em geral associada a uma propriedade invariante sob alguma transformação e o conjunto de todas as transformações que deixam esta estrutura invariante, juntamente com a composição de transformações, forma um grupo. Na mecânica e na teoria de campos, por exemplo, pode-se mostrar que um sistema invariante por translações espaciais apresenta conservação do momento linear, a invariância por rotações implica na conservação do momento angular enquanto a invariância por translações temporais corresponde à conservação da energia total do sistema.

Os grupos também são usados na química e na cristalografia para classificar estrutruras cristalinas, poliedros regulares e simetrias na estrutruras moleculares.

Álgebra Multilinear

A álgebra multilinear é uma extensão dos conceitos e métodos da álgebra linear. Assim como a álgebra linear generaliza a noção de um vetor do \(\Bbb R^3\) para espaços vetoriais mais gerais e abstratos, a álgebra multilinear estende o conceito de tensor para a teoria dos espaços tensoriais. Um tensor é uma aplicação \(\phi\) linear em qualquer uma de suas entradas, ou seja:
$$\phi(\alpha x + \beta y, z, \ldots) = \alpha \phi(x, z, \ldots) + \beta \phi(y, z, \ldots),$$

sendo esta operação válida para todas as entradas da transformação. Tipos diversos de tensores surgem nas aplicações voltadas para a física e a engenharia. Um exemplo de tensor conhecido desde níveis básicos do estudo da matemática é a métrica de Euclides, que representaremos aqui por \(\eta\). Se \(\vec{u}, \vec{v}\) são vetores do espaço então
$$\eta(\vec{u}, \vec{v}) = \vec{u} \cdot \vec{v} \text{, o produto escalar usual.}$$

Lembrando: Dados dois vetores \(\vec{u} = \sum_i a_i \hat e_i, \vec{v} = \sum_i b_i \hat e_i\), em uma base \(\{ \hat e_i \} \) qualquer, o produto escalar é difinido como
$$\vec{u} \cdot \vec{v} = \sum_i a_i b_i.$$

Esta é, claramente uma operação multilinear e simétrica pois \(\eta(\vec{u}, \vec{v}) =\eta(\vec{v}, \vec{u})\).

Naturalmente o mesmo conceito pode ser generalizado para espaços de dimensões maiores, \(\Bbb R^n\) e para outros espaços vetoriais quaisquer.

Albert Einstein, Levi Civita, Felix Klein e Marcel Grosmann

O termo tensor foi criado por William Rowan Hamilton em 1846 para descrever a norma em um tipo de sistemas algébricos, mais tarde conhecidos por Álgebras de Clifford. Woldemar Voigt, em 1899 usou o termo com seu significado atual. A notação de tensores usando coordenadas foi apresentada por Gregorio Ricci-Curbastro em 1890, sob o título de Cálculo Diferencial Absoluto, trabalho que recebeu ampla divulgação por meio do texto clássico de Tullio Levi-Civita, de 1900, com o mesmo título. No século XX o assunto veio a ser chamado de Cálculo ou Análise Tensorial, mais recentemente de Álgebra Multilinear. O tema alcançou sua plena aceitação após seu uso na teoria da Relatividade Geral de Einstein, que é formulada inteiramente na linguagem dos tensores, em particular na formulação geométrica dada por Riemann, que ele aprendeu com seu amigo, o geômetra Marcel Grossmann e com o próprio Levi-Civita.

Em meados do século XX o estudo dos tensores foi reformulado de forma geral e abstrata. Um tratado sobre o assunto produzido pelo grupo Bourbaki teve influência decisiva nesta direção, tendo inclusive cunhado o termo “Álgebra Multilinear”. Esta reformulação se deu sobre a teoria desenvolvida por Hermann Grassmann, a teoria das formas diferenciais e conceitos como o do produto exterior que generaliza o produto vetorial de vetores de \(\Bbb R^n\). Os tensores são usados em diversos outros campos de aplicação, em particular na mecânica do contínuo, na teoria de campos, na teoria da relatividade geral, na geração de imagens usadas para diagnósticos médicos, entre outras.

Geometria não Euclidiana

A Geometria não Euclidiana pode ser vista como resultado das tentativas, feitas desde a época de Proclo, de se provar o quinto postulado de Euclides como conseqüência dos demais postulados. A primeira tentativa feita nesta direção foi feita por Saccheri em 1733, e mais tarde retomado por Lambert em um questionamento da validade do quinto postulado. Muitos outros trabalhos se seguiram até sua florescência nas obras de Lobachevsky e Bolyai. Também Legendre trabalhou sobre este tema, mas foi incapaz de ir além dos conceitos puramente euclidianos.

Durante os últimos anos do século XVIII as doutrinas de Kant sobre o espaço absoluto e a necessidade dos postulados da geometria estavam em voga e foram submetidas a debates e questionamentos. Neste período, Gauss estava estudando o quinto postulado tendo influenciado Lobachevsky através de seu amigo Bartels, e Bolyai por meio de seu pai Wolfgang, um de seus antigos alunos. Por esta razão muitas vezes se afirmou que Gauss deveria ser considerado o fundador da geometria não euclidiana. No entanto, embora tendo realmente contribuído sobre o assunto, Gauss receava a opinião de seus pares e evitou colocar por escrito suas idéias a respeito.

Embora Lobachevsky tenha sido aluno de Bartels em torno de 1807, existem evidências de que ele não discutiu com o mestre o quinto postulado. Além disto suas pesquisas foram iniciadas antes que ele iniciasse sua relação com Bartels. Em 1826 Lobachevsky expôs os fundamentos de sua doutrina das paralelas, baseada na suposição de que mais de uma reta pode ser traçada por um ponto fora de uma reta no mesmo plano sem nunca a interceptar. A teoria foi publicada na totalidade em 1829-30, enquanto Lobachevsky continuou publicando sobre este tema e outros em matemática até a sua morte.

Johann Bolyai recebeu de seu pai, Wolfgang, parte da inspiração para seu trabalho. Aos vinte e um anos ele descobriu, no mesmo tempo que Lobachevsky, os princípios da geometria não euclidiana, e relata este fato em uma carta datada de novembro de 1823. A publicação completa de suas idéias aparece em artigo em 1832. Em comunicações com outros matemáticos, no período de 1831-32, Gauss assegura que havia desenvolvido uma teoria nas mesmas linhas que Lobachevsky e Bolyai, embora não a tenha publicado. Outro matemático, Schweikart, também explorou as possibilidades das geometrias obtidas através da flexibilização do quinto postulado e uma teoria das paralelas (1807), embora também não a tenha publicado.

A hipótese foi admitida gradualmente entre os pesquisadores da matemática. Em torno de 40 anos após sua publicação vários estudiosos trataram deste assunto, entre eles Riemann (1868), Helmholtz (1868), na Alemanha, Beltrami (1872) na Itália e Clifford na Inglaterra. A partir de 1880 a teoria estava amplamente aceita e considerada legítima.

O mais importante dos pesquisadores modernos nesta área foi Riemann. Ele aplicou os métodos da geometria analítica ao estudo da teoria e apresentou a sugestão de uma superfície de curvatura negativa constante, que Beltrami chamou de “pseudo-esfera”. Desta forma ele mostrou que a geometria de Euclides, com sua curvatura nula, é um caso intermediário entre sua pseudo-esfera e as superfícies de Lobachevsky. Enquanto Bolyai descreveu apenas duas geometrias, Riemann notou a existência de três, denominadas por Klein (1871) de geometrias elíptica (Riemann), parabólica (Euclides) e hiperbólica (Lobachevsky).

Variedades

(18) O estudo das variedades (Manifolds em inglês) combina muitas áreas importantes da matemática, generalizando conceitos tais como curvas e superfícies de qualquer dimensão, envolvendo conceitos da álgebra linear e multilinear e da topologia.

Uma variedade18 é um conjunto de objetos que pode ser colocado localmente (i. e., na vizinhança de cada um de seus pontos) em correspondência biunívoca com \(\Bbb R^n\). Elas são espaços matemáticos abstratos que generalizam os conceitos de curvas e superfícies. Curvas planas ou espaciais podem ser localmente aproximadas por segmentos de retas, sendo por isto, variedades de dimensão 1. A superfície da Terra pode ser localmente aproximada por partes de um plano, sendo um exemplo de variedade de dimensão 2. É interessante lembrar que podem ser necessárias mais de uma aplicação (também chamada de parametrização) para cobrir toda a variedade. Se estas apliacações são diferenciáveis a variedade é dita diferenciável. As esferas, por exemplo, necessitam de pelo duas parametrizações para serem totalmente cobertas. Existem variedades que exibem propriedades ou estruturas especiais, tais como as propriedades de um grupo, nas variedades de Lie. As variedades diferenciáveis são espaços onde as operações do cálculo diferencial e integral podem ser utilizadas.

Definição de Variedade

Gauss foi provavelmente o primeiro a considerar espaços abstratos como objetos matemáticos com méritos próprios e dignos de estudo. Seu Teorema Egrégio prova que a curvatura de uma superfície é uma propriedade intrínseca e não depende do espaço ambiente onde está localizada esta superfície, além de fornecer uma técnica para o cálculo destas curvaturas. A teoria das variedades trata das propriedades puramente intrínsecas de superfícies e suas generalizações, ignorando, em geral, o espaço ambiente, embora também seja tema de estudo a busca de espaços ambientes que possam conter os espaços intrínsecos, por meio das chamadas imersões.

As geometrias não-euclidianas estudadas por Saccheri, Lobachevsky, Bolyai e Riemann são casos particulares de variedades com curvaturas constantes nulas, positivas e negativas. Bernhard Riemann foi o primeiro a trabalhar sobre as generalizações de conceito de superfícies para hipersuperfícies de dimensões superiores a 2. Um exemplo de tais hipersuperfícies é a hiperesfera \(S^n\) de raio 1 definida por
$$S^n=\{(x_1, \ldots, x_n) \in R^{n+1}; \vert x_1 + \ldots + x_{n+1} \vert = 1 \}.$$

Definida desta forma a hiperesfera de dimensão \(n\) está naturalmente imersa em \(\Bbb R^{n+1}\).

O termo manifold foi utilizado por Riemann em seu trabalho original, em alemão Mannigfaltigkeit, traduzido por William Clifford como “manifoldness”. A palavra portuguesa variedade se deriva do francês variété, com o mesmo significado, o que mostra a forte influência recebida no Brasil pela escola francesa, em particular derivada dos trabalhos do grupo Bourbaki.

Em sua aula inaugural na Universidade de Göttingen, Riemann descreveu o conjunto de todos os possíveis valores de uma variável dentro de certas restrições, como Mannigfaltigkeit, pois a variável poderia assumir diversos valores. Ele fez uma distinção entre variedades discretas e contínuas, de acordo com os valores discretos ou contínuos assumidos por estas variáveis. Como um exemplo do caso contínuo ele se referiu a cores e posições, além de formas possíveis para um objeto no espaço. Usando indução Riemann construiu “uma variedade estendida \(n\) vezes, ou uma variedade n-dimensional” como um empilhamento de variedades de dimensão \(n-1\). Esta noção intuitiva de Riemann foi formalizada no conceito moderno de variedades.

Também no estudo das variáveis complexas o processo de continuação analítica leva à construção de variedades. Variedades abelianas já eram implicitamente conhecidas na época de Riemann enquanto o tratamento geométrico da mecânica lagrangeana e hamiltoniana também leva à construção natural de variedades. O uso das chamadas coordenadas generalizadas, tais como os ângulos envolvidos em movimentos pendulares e suas derivadas no tempo, levam a variedades de dimensões superiores às dimensões do espaço físico ordinário.

(19) A conjectura de Poincaré: Toda variedade 3-dimensional conexa e fechada (i.e. compacta e sem fronteira) é homeomórfica a uma 3-esfera.
(20) Muitos matemáticos concordam que Grigori Perelman respondeu corretamente esta questão, em 2006.

Henri Poincaré estudou variedades 3-dimensionais e levantou a pergunta hoje conhecida como conjectura de Poincaré19, que tem permanecido em aberto por quase um século, apesar do esforço de muitos matemáticos20. Hermann Weyl forneceu em 1912 a definição intrínseca de variedade diferenciável usada nos dias de hoje. Na década de 1930 Hassler Whitney e outros esclareceram os fundamentos da teoria e a desenvolveram usando os conceitos da geometria diferencial e dos grupos de Lie.

Álgebra

A álgebra pode ser dividida em clássica, que trata da solução de equações ou a procura de incógnitas, e abstrata, algumas vezes chamada de álgebra moderna, que consiste basicamente no estudo da teoria de grupos, anéis e campos. A álgebra clássica passou por um longo desenvolvimento, ao longo de pelo menos 4000 anos, enquanto a parte moderna é recente, tendo aparecido apenas nos últimos 200 anos.

Uma parte significativa da álgebra está associada à teoria dos números e o reconhecimento de novos conjuntos tais como os negativos e zero, os irracionais e os complexos. O desenvolvimento da notação, por sua vez, passou por fases distintas, como o período puramente verbal ou retórico, onde as sentenças e equações eram denotadas por meio de linguagem corrente, sem abreviações, o período sincopado, onde se passou a usar abreviações das palavras, e o período simbólico, em uso até os dias de hoje.

Os egípcios, segundo se depreende dos papiros de Ahmés (descobertos por Rhind), podiam resolver equações lineares com uma incógnita em torno de 1850 a.C.. Os problemas eram apresentados de forma retórica, sendo propostos e resolvidos verbalmente. O Papiro do Cairo (aproximadamente 300 a.C.) indicam a solução de problemas contendo duas incógnitas e duas equações do segundo grau. Compreende-se hoje que a álgebra egípcia ficou prejudicada pelo uso de um método pouco prático para se lidar com as frações.

Na Babilônia, no período de 1800 a 1600 a.C., a matemática se encontrava em estado mais avançado que no Egito. Eles desenvolveram um excelente sistema sexagesimal de numeração, o que permitia facilidade nas operações e o conseqüente desenvolvimento da álgebra e sabiam encontrar soluções para equações quadráticas, embora reconhecessem apenas uma das raízes que deveria ser positiva. Também sabiam lidar com sistemas de duas equações e duas incógnitas e existem evidências de que chegaram a tratar de alguns casos com um número superior de incógnitas e equações de grau maior que dois. Eles utilizam uma forma retórica de notação, como os egípcios, e chegaram a introduzir alguns símbolos como abreviações. Os procedimentos eram ensinados através de exemplos e nenhuma sistematização teórica ou sequer a idéia de demonstrações estava presente. Como os egípcios eles só reconheciam a existência de números positivos racionais apesar de terem encontrado, em alguns casos, soluções aproximadas para problemas que não admitiam soluções racionais.

O período grego clássico se distinguiu pelo rápido progresso na geometria. Os gregos não reconheciam a existência dos irracionais e evitavam esta limitação tratando de forma geométrica os problemas algébricos. Identidades algébricas e soluções de equações quadráticas eram expressas e resolvidas de forma gráfica. A grande conquista grega na matemática consistiu no estabelecimento de procedimentos gerais e na justificação de todas as afirmações por meio de demonstrações e raciocínio dedutivo, Apesar disto sua limitação na álgebra fez com que ela tivesse pouca aplicação prática e que seu progresso ficasse retardado por vários séculos.

Em um período posterior ocorreu entre os matemáticos gregos um movimento que os afastou da álgebra puramente geométrica. Este movimento incluiu pensadores tais como Arquimedes, Apolônio, Ptolomeu e Heron, muitos deles professores ou alunos da Escola de Alexandria. Entre eles se destacou o matemático Diofanto, no século III, verdadeiro precursor da moderna teoria dos números. Diofanto foi o primeiro a introduzir uma notação sincopada e parcialmente simbólica na solução dos problemas algébricos apesar de que, depois dele, o estilo retórico tenha permanecido em uso por vários séculos que se seguiram. Para indicar a soma de dois ou mais termos Diofanto simplesmente os escrevia em sucessão, sem qualquer sinal interposto. A subtração era indicada por uma abreviatura da palavra leípsis, que em grego significa “termo negativo” ou “menos”.

Diofanto forneceu soluções para duas ou mais equações contendo várias variáveis e possuindo um número infinito de soluções racionais – o que hoje conhecemos como equações Diofantinas. Seu trabalho despertou o interesse dos matemáticos árabes e através destes, chegou à Europa motivando matemáticos tais como Pierre de Fermat, no século XVII. Diofanto mostrou que a equação \(x^n + y^n = z^n\) admite inifintas soluções inteiras para \(n=2\). Fermat, ao retomar o problema, estabeleceu o famoso “último teorema de Fermat”, segundo o qual a equação não tem soluções inteiras para \(n\gt 2\).

Diofanto não possuía procedimentos gerais, resolvendo cada problema por um método diferente. Ele aceitava apenas raízes positivas e racionais e ignorava a existência das demais. Mesmo no caso de equações quadráticas que possuem duas raízes positivas racionais ele apresentava apenas uma solução e abandonava a segunda.

Os gregos foram sucedidos pelos hindus na história da matemática. A civilização na Índia é muito antiga possuindo registros matemáticos a partir, aproximadamente, de 800 a.C.. A matemática hindu recebeu grande impulso das conquistas gregas e foi fortemente impulsionada pela astronomia e astrologia. Em torno de 600 a.C. eles já possuíam um sistema de numeração decimal, reconhecendo o número zero como quantidade e marcador no sistema posicional. Os hindus introduziram os números negativos para representar débitos. O registro mais antigo de utilização dos negativos se deve a Brahmagupta, no século VII, enquanto Bhaskara, no século XII, reconheceu que um número positivo admite duas raízes quadradas. Bhaskara, que era matemático e astrônomo, escreveu o primeiro estudo empregando o sistema numérico decimal. Ele utilizava letras para designar quantidades desconhecidas e antecipou-se no uso da moderna convenção de sinais matemáticos.

Apesar de incluírem as raízes negativas e irracionais, os hindus não podiam resolver todas as equações do segundo grau por não conhecerem raízes de números negativos. Como sabemos hoje, para encontrar todas as n raízes de uma equação do n-ésimo grau, é necessário conhecer a álgebra dos complexos. No que diz respeito às equações indeterminadas os hindus fizeram avanços que superaram os de Diofante. Aryabhata, no século V obteve soluções inteiras para as equações do tipo \(ax \pm by =c\) usando um método equivalente ao método usado modernamente.

Nos séculos VII e VIII os árabes, unificados pela pregação de Maomé, estenderam suas conquistas desde a Índia, passando pela África e chegando até a Espanha. Em seguida, em um período de grandes progressos até o século XIV, eles se dedicaram às artes e a ciência tendo sido os responsáveis pela maior parte do progresso científico retomado depois pelo ocidente. Além disto foram os guardiões da cultura acumulada no período clássico, que consiste na duração das civilizações grega e romana, enquanto a Europa se encontrava na chamada Idade das Trevas.

Os árabes adotaram e aperfeiçoaram o sistema de numeração hindu, os símbolos e a notação posicional. O chamado sistema indo-arábico assim obtido e os algoritmos utilizados efetuar as operações, ambos em uso até os dias de hoje, foram transmitidos para a Europa em torno do início do século XIII. Da mesma forma que os hindus, os árabes sabiam operar livremente com os números irracionais, apesar de terem rejeitado os números negativos adotando uma atitude retrógrada, neste particular. Os árabes deram grandes contribuições no campo da álgebra, a começar pelo próprio nome. A palavra álgebra deriva do título de um livro, Hisab al-jabr w’al muqabala, traduzido como em geral como “Recuperação e Simplificação” ou “Transposição e Cancelamento”. O texto foi escrito no século IX pelo matemático e astrônomo Mohammed ibn-Musa al-Khowarizmi, nome que deu origem à palavra moderna algoritmo.

A álgebra árabe era inteiramente retórica. Eles sabiam encontrar raízes de equações quadráticas, inclusive irracionais, mas rejeitavam os números negativos. Omar Khayyam, século XI, um poeta e matemático fez contribuições importantes para a solução de equações cúbicas usando métodos geométricos que envolviam as interseções de cônicas.

Com o Renascimento e a recuperação das origens clássicas do século XVI em diante o zero passou a ser aceito como número e os irracionais eram amplamente usados, embora muitos matemáticos receassem que eles não fossem números verdadeiros. Também os negativos eram conhecidos mas não totalmente aceitos. Números complexos não haviam sido sequer imaginados. A aceitação completa dos sistemas numéricos e sua álgebra como hoje utilizados só foi completa no século XIX. O Renascimento marcou a redescoberta e ascensão da álgebra. Grandes avanços na técnica, em particular na solução de equações cúbicas e quárticas foram obtidas no século XVI, em particular com a obra de Cardano publicada em 1545, Ars Magna. Apesar de considerado o maior matemático de seu tempo Cardano ainda utilizava uma notação puramente retórica. Grandes esforços se seguiram para estender estas conquistas para equações polinomiais de grau superior a 4, esforços que não atingiram plenamente sua meta apesar de terem gerado, como efeitos indiretos, boa parte da matemática posterior. Este período assistiu também ao aperfeiçoamento do simbolismo, o que permitiu sistematizar e avançar o conhecimento sobre álgebra.

No que diz respeito ao simbolismo um representante importante foi Viète, um francês que viveu de 1540 até 1603. Ele foi o primeiro a usar letras para representar constantes conhecidas (ou parâmetros). Desta forma foi possível promover o estudo de casos gerais e estabelecer relações entre os coeficientes de um polinômio e suas raízes, na “teoria das equações”. Apesar dos avanços a álgebra de Viète era sincopada e não completamente simbólica, estágio só alcançado com La Géométrie de Descartes, em 1637. Com este trabalho se tornou disponível uma relação frutífera entre a geometria e a álgebra, o que hoje conhecemos como geometria analítica, desenvolvida simultaneamente por Fermat e Descartes.

Até o final do século XVII o uso de notação simbólica se tornou deliberado e generalizado. Surgiu a compreensão de que uma notação consistente e de fácil manipulação era uma ferramenta poderosa para a matemática. No entanto, mesmo nesta época, faltava à álgebra uma fundamentação lógica consistente, algo que se pudesse comparar com a sistematização de Euclides para a geometria.

Durante o século XIX os matemáticos britânicos assumiram a liderança no estudo da álgebra. A atenção se voltou para as diversas “álgebras”, o estudo de objetos matemáticos tais como vetores e matrizes, números complexos e quatérnions e transformações, e das várias operações que podem ser realizadas sobre estes objetos. O objeto de consideração da álgebra, desta forma, se expandiu para o estudo das formas e estruturas algébricas mais amplas e mais genéricas que os estudo dos sistemas números e suas operações. Provavelmente o rompimento mais significativo com o pensamento antigo se deu com o surgimento das álgebras não comutativas que ocorrem, por exemplo, entre as matrizes e os quatérnions estudados por Hamilton em 1843.

O inglês Peacock, (1791-1858) foi o fundador do pensamento axiomático na aritmética e na álgebra. DeMorgan (Inglaterra, 1806-1871) estendeu o trabalho de Peacock para considerar operações definidas com símbolos abstratos, enquanto Hamilton (Irlanda, 1805-1865) demonstrou que os números complexos podem ser expressos como uma álgebra formal, definida sobre pares de números reais. Por exemplo
$$(a,b)+(c,d)=(a+b,c+d);(a,b).(c,d)=(ac−bd,ad+bc).$$

Gibbs (EUA, 1839-1903) desenvolveu uma álgebra sobre vetores no espaço tridimensional e Cayley (Inglaterra, 1821-1895) fez o mesmo usando matrizes (uma álgebra não comutativa).

O conceito de grupo surgiu como conseqüência do trabalho de vários matemáticos. Provavelmente os passos iniciais mais importantes foram dados por Galois (França, 1811-1832). Usando o conceito de grupos Galois pode fornecer uma resposta definitiva para uma longa questão em aberto: que equações polinomiais podem se resolvidas por operações algébricas?

O conceito de corpo foi explicitado no trabalho de Dedekind em 1879. Peano (Itália, 1858-1932) criou um tratamento axiomático dos números naturais em 1889, mostrando que todos os outros conjuntos numéricos podem ser construídos de modo formal a partir do conjunto dos naturais. (“Deus criou os números naturais. Todo o resto é criação do homem.” – Kronecker)

A álgebra abstrata é um campo a matemática moderna ainda em franco desenvolvimento no século XXI, possuindo muitos problemas não resolvidos e extensas possibilidades de interação com outras áreas da matemática e de aplicações. Um exemplo disto é o extenso uso que se faz da teoria de grupos em física, particularmente na teoria de campos e relatividade geral.

Análise

A origem da análise matemática, levando-se em conta seu aspecto fundamentalmente crítico e formal, remonta a pouco mais de cem anos. Desde a invenção do cálculo, por Newton e Leibniz, se detectava a necessidade de se encontrar fundamentação mais sólida para os métodos ali estabelecidos. Os trabalhos pioneiros de Euler, Lagrange, Gauss, Abel e Cauchy marcaram o início da reformulação crítica do conhecimento matemático, caracterizada principalmente pela necessidade de deduções rigorosas do ponto de vista lógico, sem as induções e analogias até então muito comuns. A tendência a procurar formas puramente abstratas, sem apoio nas figuras geométricas ou nos objetos concretos, tornou-se dominante.

A importante noção de continuidade, por exemplo, estava sempre ligada a uma curva ou a uma superfície, e, como tal, mostrava-se bastante particular e vaga; definida em termos puramente algébricos, adquiriu precisão e generalidade, e pôde interpretar uma série de fatos e propriedades aparentemente paradoxais. Por exemplo: uma função unívoca pode ser representada por uma curva; sua derivada em um ponto é representada pela declividade da reta tangente à curva nesse ponto. Admitia-se como evidente que, desde que a função fosse contínua em um ponto, tinha ela uma derivada nesse ponto (porque a curva seria contínua e poder-se-ia traçar a tangente). Em 1854, Riemann descobriu uma função contínua que não tinha derivada em vários pontos. Pouco depois, Weierstrass apresentou uma função contínua que não tinha derivada em nenhum ponto de um determinado intervalo. Cantor e Dedekind, entre outros, descobriram muitas funções que apresentavam aparentes anormalidades. Essas descobertas mostraram que o raciocínio matemático deve libertar-se das intuições geométricas, por extremamente obscuras e complexas. Assim, a atenção dos investigadores que criaram a atual análise matemática voltou-se para a realização de uma completa crítica da estrutura dos princípios fundamentais e dos conceitos primitivos das teorias matemáticas.

Entre os conceitos básicos de toda matemática, um deles mereceu especial atenção: o de número, que vinha experimentando sucessivas ampliações à medida que se procuravam resolver os problemas propostos. Outro conceito que mereceu a atenção dos pesquisadores foi o de ordem, indissoluvelmente ligado ao de número, e que recebia semelhantes extensões. Os conceitos de função, de continuidade, de limite e de convergência, já tratados de maneira menos rigorosa por Euler e Lagrange, foram objeto de definições adequadas e rigorosas por parte de Cauchy (1822). Deve-se também a Cauchy outra importante contribuição à análise matemática: a teoria das funções analíticas, onde ele estendeu às funções de variáveis complexas as propriedades estudadas por Brook Taylor. O estudo das funções elípticas, iniciado por Abel, foi desenvolvido por Jacobi em seu Fundamenta nova theoriae functionum ellipticarum (1829; Novos fundamentos da teoria das funções elípticas).

A teoria dos números, iniciada por Gauss, foi continuada por Dirichlet, que estudou propriedades da sucessão dos números primos, empregando métodos infinitesimais, e introduziu a noção geral de função como correspondência entre dois conjuntos. Dirichlet formulou também o conceito de séries absolutamente convergentes e estabeleceu as condições precisas para que uma função possa ser desenvolvida em séries de Fourier. Outros estudiosos da teoria dos números foram Ernst Kummer e Leopold Kronecker, que desenvolveram as idéias propostas por Galois sobre corpos de números (conjuntos aos quais pertencem números e os resultados das operações que se fazem entre eles), que precederam a teoria dos grupos.

As equações integrais e o cálculo funcional, introduzidos por Vito Volterra e David Hilbert, entre outros, integram o panorama atual da análise matemática. A crescente complexidade do conhecimento matemático exige constante vigilância das estruturas básicas dos novos conceitos, dos novos algoritmos, das extensões dos conceitos antigos e de todas as questões ligadas a esses conceitos e algoritmos.

Também chamada cálculo combinatório, a análise combinatória estuda e conceitua os processos de formação, contagem e propriedade de agrupamentos que podem ser formados com um número finito de elementos dados e de natureza qualquer, segundo determinados critérios. Um agrupamento ou coordenação matemática classifica-se de acordo com a maneira como se reúnem seus elementos. Assim, a coordenação simples é aquela em que os elementos entram uma só vez na formação de cada grupo. Quando o elemento ou elementos entram várias vezes na formação do grupo, temos a coordenação com repetição. As letras \(a, b, c e d\), por exemplo, podem formar agrupamentos simples \((ab, ac, bc, abc, abcd)\) ou com repetição \((abcc, abbd, acdd, bd aac)\), etc. Além disso, dependendo do número de elementos de cada grupo, diz-se que os agrupamentos podem ser unitários \((a, b, c, d)\), binários \((ab, ac, bd)\), etc, terciários \((abc, bcd, bcc)\) e assim por diante. A análise combinatória é utilizada com muita freqüência no estudo do binômio de Newton e dos determinantes, na teoria dos números, no cálculo das probabilidades etc.

As tentativas de solução das equações da física matemática deram origem à chamada análise funcional. Essas equações, classificadas como equações diferenciais ordinárias, equações de derivadas parciais e equações integrais, têm como incógnitas uma função, isto é, seus espaços de soluções são espaços funcionais, conjuntos cujos elementos são funções. Atualmente, a análise funcional linear, ou simplesmente análise funcional, é entendida como a teoria geral dos operadores lineares sobre espaços funcionais. Quando os operadores são não-lineares, obtém-se a denominada análise funcional não-linear, de resultados recentes e esparsos, mas de extrema importância por suas aplicações a problemas de dificílima solução.

Como exemplo característico da utilidade da análise funcional nos diversos setores da matemática aplicada, cita-se a teoria das aproximações, que engloba os resultados mais significativos da análise numérica e que é uma conseqüência direta de teoremas gerais da análise funcional.

Fenômenos periódicos relativamente complicados podem ser estudados por meio de componentes mais simples e do mesmo tipo, denominados harmônicos. A análise harmônica estuda a forma de determinar as características dos harmônicos de modo a representar, da melhor maneira possível, um fenômeno físico original. É aplicada em vários campos distintos do conhecimento humano. No domínio da acústica, por exemplo, pode-se, com o uso de um microfone, transformar vibrações sonoras em ondas elétricas que podem ser vistas na tela de um osciloscópio com a forma de uma curva, que depende da qualidade do som. Devido a sua periodicidade, ela pode ser decomposta em uma freqüência fundamental e seus harmônicos.

No domínio da engenharia eletrônica, vários exemplos importantes podem ser citados. A não-linearidade em um amplificador provoca o aparecimento de harmônicos, que alteram a qualidade do sinal a ser amplificado. O processo de funcionamento dos aparelhos de rádio depende também da existência de harmônicos. No campo da distribuição da energia elétrica, a formação de um terceiro harmônico em transformadores trifásicos (decorrente da não-linearidade do núcleo do transformador) pode provocar aquecimento indesejável. Na engenharia mecânica, pode ser usada em estudo de vibrações mecânicas. Até mesmo na medicina encontram-se exemplos de sua aplicação, tais como os encefalogramas.

No estudo dos métodos para obtenção de soluções quantitativas de problemas formulados matematicamente, de modo a permitir sua utilização prática, usa-se a análise numérica. Ela se aplica também ao estudo da propagação de erros. A análise numérica está associada a atividades ligadas à computação e compreende problemas díspares como a reserva automática de passagens de uma companhia de aviação, a elaboração de balanços e folhas de pagamento, o controle de estoques e a realização de diagnósticos médicos. Com efeito, foi a existência dos computadores digitais – capazes de efetuar, em alguns casos, mais de um milhão de operações aritméticas por segundo – que permitiu que muitos métodos numéricos se tornassem de emprego corrente.

O objetivo final da pesquisa científica é a interpretação e previsão dos fenômenos. Para isso, pode ser usada a análise estatística, cujos modelos matemáticos se baseiam na teoria das probabilidades. A aplicação desses modelos matemáticos a fenômenos estatísticos pode também ter em vista fins puramente descritivos, como, por exemplo, quando se pretende estudar as características de um conjunto de dados extraídos de um universo particular, usualmente denominado população, de forma simples e concisa. Nesse caso, os dados são transcritos para uma tabela estatística e representados graficamente. Finalmente, calculam-se as sínteses numéricas, que são as características descritivas do conjunto estudado (média, desvio padrão etc.).

Na maioria dos casos, porém, o objetivo final da investigação estatística não será de natureza puramente descritiva, como é o caso de dados obtidos de amostras, por meio dos quais se estimam as características da população total. A descrição dos elementos observados na amostra constitui, assim, uma fase preliminar da pesquisa, à qual se segue a aplicação da teoria estatística para fins de análise e previsão.

Fundamentos da Matemática

O estudo dos fundamentos da matemática trata de conceitos matemáticos básicos que não podem ser eles mesmos explicados por recursos matemáticos. Especialmente no século XX, as pesquisas sobre os fundamentos da matemática passaram a incluir uma investigação sobre a natureza das teorias matemáticas e o campo de ação dos métodos por ela empregados.

Uma abordagem frequente para este estudo está baseada sobre o método axiomático, cuja origem, segundo se acredita, se encontra nos Elementos de Euclides, onde há axiomas (verdades evidentes) e postulados (fatos geométricos óbvios, cuja validade pode ser admitida sem discussão). O método axiomático consiste em escolher um conjunto de axiomas como fundamentais e, a partir deles, deduzir proposições chamadas teoremas, que podem ser demonstradas.

Em 1888 e 1889, Richard Dedekind e Giuseppe Peano lançaram as bases para a axiomatização da teoria dos números e, desde então, o método axiomático passou a ser empregado em matemática cada vez com maior freqüência. A teoria dos conjuntos foi axiomatizada pela primeira vez em 1908, e quase todos os ramos receberam tratamento análogo. A moderna matemática mostrou que é possível deduzir todo um corpo doutrinário a partir dos mesmos postulados, sem discutir o significado dos termos empregados. Essa nova atitude partiu principalmente de Moritz Pasch e David Hilbert, que publicou, em 1899, Grundlagen der Geometrie (Fundamentos da geometria), em que estuda criticamente o sistema axiomático de Euclides.

A criação dos diferentes sistemas de numeração e as constantes extensões experimentadas pelo conceito de número caracterizam outra maneira de elaborar uma teoria matemática. É o método que Hilbert chamou de “método genético”. Seus elementos são gerados ou constituídos numa ordem definida, a partir de uma noção inicial e pela extensão de seu significado a novos campos de definição. A obtenção dos resultados é feita por indução, em várias etapas: (1) comprovação da hipótese para um elemento do conjunto; (2) suposição de que a hipótese é verdadeira para um elemento qualquer do conjunto; e (3) demonstração de que o elemento seguinte ao anterior, segundo uma relação de ordem previamente estabelecida no conjunto, também apresenta a propriedade desejada.

O raciocínio dedutivo, assim como o método axiomático, é empregado para obter propriedades novas a partir de noções triviais, que podem ser tomadas como postulados. Como exemplo disso, utiliza-se a sucessão de números naturais: 1, 2, 3… quando se contam objetos que formam um conjunto. Todos os elementos dessa sucessão são gerados a partir do primeiro elemento, por meio de apenas uma operação fundamental de contagem, que permite passar do objeto anterior para o posterior pelo acréscimo de uma unidade.

A exatidão de uma propriedade pode ser demonstrada pela premissa segundo a qual, se ela for verdadeira para n elementos, também será para n + 1. Basta demonstrar que ela é verdadeira para o primeiro elemento, uma vez que, em função da demonstração anterior, será verdadeira para todos os demais. Esse recurso, chamado “método da indução”, foi apresentado pela primeira vez no século XVI por Francesco Maurolico. Segundo Henri Poincaré, esse é o método por excelência do raciocínio matemático.

Em 1889, Peano apresentou um conjunto de propriedades imediatas que deveriam ser tomadas como postulados e, a partir delas, construiu a teoria axiomática dos números. A noção de número natural surgiu da necessidade de comparar duas coleções de objetos e é conhecida mesmo entre as tribos que vivem em estágios primitivos. As primeiras operações aritméticas evoluíram a partir das comparações entre diferentes conjuntos de objetos.

No início do século XX, surgiram três escolas de pensamento, denominadas logicismo, formalismo e intuicionismo, para solucionar uma crise nos fundamentos da matemática: existia entre os matemáticos um profundo desconhecimento sobre os conceitos básicos e os métodos utilizados para chegar aos resultados em seus estudos.

De acordo com o logicismo, cujo principal representante foi Bertrand Russell, a matemática deriva de um conjunto de princípios lógicos básicos e investiga um domínio de entes abstratos (como pontos, números e conjuntos) que existem independentemente do investigador, de tal forma que qualquer noção matemática pode reduzir-se à idéia de propriedade abstrata. Para os logicistas, é possível deduzir toda a matemática a partir da lógica pura, sem necessidade de empregar conceitos matemáticos específicos, como número ou conjunto.

O formalismo, defendido por David Hilbert, admite que a matemática se compõe de símbolos manipulados independentemente de seu significado, segundo regras definidas para combinação e transformação. Hilbert pretendia mostrar que os processos usuais de demonstração não davam margem a paradoxos e eram concretos e suficientes para erigir toda a matemática a partir de alguns axiomas. Para ele, a consistência da matemática não pode ser posta em dúvida. Seu programa envolve duas etapas: a elaboração de um sistema formal de cujos axiomas se deduz, com regras de inferência explicitamente relacionadas, pelo menos a parte básica da matemática; e a constatação de que o uso de tais regras, aplicadas aos axiomas, não pode levar a contradições.

O intuicionismo, cujo principal teórico foi o holandês Luitzen Brouwer, é uma forma de conceber a matemática como atividade intelectual consistente por si mesma, que lida com construções mentais governadas por leis autoevidentes. Para os intuicionistas, todo ente matemático admissível deve ser construído, ou, pelo menos, a possibilidade de executar a construção num determinado número de passos deve ser provada.

Em 1930, as três escolas conviviam, sem que nenhuma delas se destacasse mais do que as outras. Trinta anos depois, as divergências entre as três correntes, que agora não eram mais as únicas, haviam-se reduzido a uma simples questão de opção. Entre as novas correntes estavam o logicismo pluralista, de H. Mehlberg e Rudolf Carnap; os estudos lógicos de Wittgenstein; a teoria do grupo Nicolas Bourbaki e o formalismo construtivista de Goodstein.

Bibliografia

  • Ávila, Geraldo : Cálculo, Funções de uma Variável (vol. 2) LTC, Rio de Janeiro, 1989.
  • Boyer, Carl: História da Matemática, Edgard Blucher, São Paulo, 1996.
  • Courant, R; Robbins H.: O Que é a Matemática?, Ciência Moderna, Rio de Janeiro 2000.
  • Eves, Howard: Introdução à História da Matemática, Editora Unicamp, Campinas1990.
  • Russel, B.: História do Pensamento Ocidental, Ediouro, Rio de Janeiro, 2001.
  • Smith, D. E.: History of Modern Mathematics, Mathematical Monographs No. 1, Project Gutenberg, 1906.

Matemática na Grécia Antiga



Preliminares Históricos

A Matemática é mais antiga que a civilização. Existem registros muito antigos de contagem por meio de riscos em pedaços de ossos, pedras e moldes de barro originados de uma época em que os agrupamentos humanos eram nômades e não possuíam a palavra escrita. O início da civilização ocorreu no Período Neolítico na Mesopotâmia, na região entre os rios Tigres e Eufrates onde hoje se encontra o Iraque, e no Egito, quando teve início um processo de desertificação das savanas. Os agrupamentos humanos foram forçados a abandonar a vida nômade e se fixar em aldeias em torno das bacias dos grandes rios e a desenvolver tecnologias para aumentar sua eficiência na produção de alimentos e utensílios de uso geral. Para isto tiveram que irrigar as terras cultiváveis e garantir o fornecimento de água potável. Devido ao acúmulo de habitantes sobre uma área limitada tiveram também que construir um sistema de esgotos. A necessidade de previsão das estações férteis exigiu a construção de calendários que, por sua vez, demandava conhecimentos de astronomia. Para tudo isto foi necessário o desenvolvimento da palavra escrita e da matemática. A história da Matemática se inicia com os processos de contagem de objetos e da passagem do tempo, com a aplicação deste conhecimento nas plantações e criação de animais, na construção das cidades, de ferramentas, na fabricação de tecidos e na aplicação sobre a arte. A necessidade de reproduzir em rituais religiosos a saga mitológica de cada cultura também contribuiu para a evolução da matemática, particularmente em seus aspectos teóricos.

(1) Também chamado papiro de Rhind, um antiquário escocês que adquiriu o papiro em 1858.

Os fundamentos antigos da matemática são encontrados em papiros egípcios e tabletes de barro cozido com a escrita cuneiforme dos vários povos que floresceram na Mesopotâmia, entre eles os babilônios. Estes documentos indicam um conhecimento básico de Aritmética, Álgebra, Geometria e até mesmo de Trigonometria. O papiro de Ahmés(1) (~1750 a.C.) revela o uso de um sistema de numeração decimal no Egito, onde a unidade era representada por uma linha simples e as primeiras potências de dez possuíam símbolos hieroglíficos próprios. A aritmética era realizada basicamente por adições simples e algumas frações, especialmente as frações unitárias, sob a forma de \(\frac{1}{n}\), eram conhecidas e tabeladas. Na álgebra eram utilizadas equações lineares contendo uma incógnita que era então representada por uma palavra e não por um símbolo.

(2) Também as civilizações chinesa e hindu contribuíram para o progresso do pensamento grego, exercendo, no entanto, menor influência devido às dificuldades de contato comercial e cultural.
(3) Um axioma é um princípio básico considerado verdadeiro sem a necessidade de provas ou demonstrações. O uso de axiomas na matemática teve origem na Grécia, em torno do século V a.C., e representa um passo fundamental para o estabelecimento desta disciplina. Os axiomas que formam a base de qualquer sistema de pensamento devem ser autocoerentes, não devendo levar a contradições internas. Além disto devem ser reduzidos em número e independentes, no sentido de não poderem ser deriváveis um do outro.
(4) A prova matemática é uma argumentação destinada a estabelecer a veracidade de uma afirmação ou teorema. Ela se inicia geralmente com as premissas consideradas corretas, em geral demonstradas previamente ou axiomas, e condições sobre as quais o teorema ou afirmação é suposto válido. Em seguida, usando as regras da lógica, se mostra que as conclusões decorrem das premissas ou não estão em desacordo com elas, devendo ser, portanto, igualmente verdadeiras.

A aritmética babilônica, por sua vez, era baseada em um sistema sexagesimal de numeração, o que deixou uma herança até os dias de hoje no uso de sistemas de base 60, por exemplo, na contagem de ângulos e do tempo. Os babilônicos do período de Hammurabi (~1950 a.C.) possuíam uma álgebra suficientemente desenvolvida para o tratamento de equações quadráticas e até mesmo algumas formas simples de equações cúbicas. Existem tabletes cuneiformes de períodos posteriores (~600 a.C. até 300 d.C.) que mostram a existência de tabelas para o cálculo da multiplicação, recíprocos e raízes quadradas, que eram geralmente empregados para o estudo da astronomia. No entanto, nem os babilônicos nem os egípcios possuíam as noções de fundamentação lógica e formal do pensamento matemático(2).

Um passo de fundamental importância para o desenvolvimento da matemática, como hoje a entendemos, foi dado durante o período grego. Grande parte dos fundamentos culturais da civilização moderna foi por eles estabelecida, particularmente nos campos do pensamento filosófico, científico e matemático. A eles se deve a fundamentação da disciplina por meio de axiomas(3) e a construção progressiva de conclusões por meio do pensamento lógico-dedutivo, as provas ou demonstrações(4). As formas e estratégias aceitas para a construção de provas matemáticas evoluíram através do tempo, tendo sido, em grande parte, propostas pelos pensadores gregos.

Um exemplo interessante deste desenvolvimento pode ser observado no uso e aceitação do teorema de Pitágoras que, na verdade, era conhecido de outros povos anteriores aos gregos, em particular os Mesopotâmios. Estes povos utilizavam o teorema e o consideravam correto porque verificavam a concordância entre o predito e o observado em situações práticas. Além de desconhecer a noção de provas eles também não percebiam a diferença entre resultados exatos e resultados aproximados que, embora úteis para o uso em aplicações, não representam grande progresso teórico. Como exemplo podemos citar o cálculo da área de um disco de raio \(r\), considerado como \(A=(3+1/6)r^2\). Os gregos foram os primeiros a compreender que a observação cotidiana não pode servir como prova final da veracidade de uma afirmação matemática.

Um Pouco de História da Grécia

Grécia Antiga é a denominação comum para um conjunto de cidades-estados independentes que se desenvolveram na bacia do mar Egeu até o mar Jônio que se formaram em torno de 2800 a.C., aproximadamente na mesma época em que estavam sendo construídas as pirâmides egípcias. No primeiro período, durante a chamada Idade do Bronze, em torno do terceiro milênio a.C. até o fim do período micênico (~1100 a.C.), os gregos eram basicamente uma população rural pacífica, formada por criadores de gado e agricultores. O grande número de ilhas e a geografia do continente, em forma de península, acabaram por facilitar a expansão do comércio marítimo com os povos da costa do Mediterrâneo e, com isto, a busca por tecnologia e integração cultural entre os povos da região, os europeus ao norte e os asiáticos a leste.

Figura 1: Mapa da Grécia

Por volta de 2600 a.C. houve uma invasão de povos de origem asiática que viviam ao norte e eram hábeis ferreiros, agricultores e navegadores. Aproximadamente seis séculos depois tribos indo-européias invadiram a península destruindo a sociedade então existente. Estes invasores, apesar de terem derrotado os habitantes da península, aprenderam com os derrotados parte de sua técnica e cultura e introduziram novos elementos, tais como a construção de cidades sob a forma de complexos fortificados. Mais tarde, em torno de 1600 a.C., os povos do continente se misturaram com um agrupamento humano que já se desenvolvia na ilha de Creta ocasionando o surgimento da chamada cultura micênica. Uma característica marcante deste período são as cidades formadas por grandes edifícios e que abrigavam uma grande população. Eles eram um povo guerreiro, interessado no comércio e nas artes e possuidores de notável conhecimento sobre arquitetura e construção de armas.

No início do século XII a.C. ocorreu uma nova invasão, desta vez promovida pelo povo dório, também de origem asiática, que migrou para a Grécia e fez sucumbir a civilização micênica. Os dórios eram guerreiros rudes e os 300 anos de seu domínio ficaram conhecidos como uma idade das trevas gregas, durante o qual houve pouco progresso nas artes e na ciência. Mais uma vez a cultura pré-existente sobreviveu à invasão violenta e, gradualmente, os dórios assimilaram dos antigos habitantes remanescentes parte de sua tradição e conhecimentos. Neste período surgiram uma língua e uma religião comuns e foi implantado o culto aos deuses do Olimpo. Para apaziguar as lutas entre as cidades e promover a união entre elas foram criados os festivais religiosos e disputas atléticas entre as cidades. Entre estes estavam os Jogos Olímpicos realizados a cada quatro anos em Olímpia, em homenagem a Zeus e Hera, iniciados em 776 a.C.. Nesta época os gregos adotaram o alfabeto fenício, abandonando os hieróglifos, o que tornou mais acessível o aprendizado da palavra escrita e facilitou a expressão de conceitos filosóficos.

Os gregos continuaram, no entanto, a viver sob o temor de novas invasões de povos diversos vindos do norte e do oriente. Isto fez com que os habitantes se agrupassem em torno de aldeias que cresceram até se tornarem as grandes cidades-estados, sendo as principais delas Atenas, Esparta, Tebas, Corinto e Argos. Em torno de 800 a.C. estas cidades adotaram um padrão arquitetônico comum, formado por uma fortaleza, a acrópole, cercada de muros altos que poderia servir de abrigo am caso de invasões. Abaixo da acrópole se encontravam o mercado, a ágora, e as áreas residenciais. Apesar da identidade cultural destas cidades, da tradição, língua e dos inúmeros esforços feitos nesta direção por alguns dirigentes, as cidades nunca foram unificadas sob uma mesma nação. Inúmeras guerras foram travadas entre as diversas cidades-estados, mas era raro que uma das cidades conseguisse anexar a outra. No entanto muitos indivíduos derrotados em batalhas eram tomados como escravos, o que favoreceu o surgimento do ócio, do tempo livre para o debate sobre temas de interesse comum tais como temas de interesse do cidadão e do pensamento filosófico.

A partir do século V a.C. os gregos começaram a formar colônias fora do continente, expandindo sua civilização em direção à Ásia, em torno do Mar Negro, França, Espanha e norte da África. Cidadãos de Atenas fundaram as primeiras colônias onde hoje se encontra a Turquia. Os cidadãos jônicos, residentes nestas colônias, se consideravam gregos e nunca perderam o contato com o continente. Foram eles os criadores do alfabeto grego e os principais responsáveis pela formação da literatura e filosofia gregas. Um importante elemento de fixação dos conceitos mitológicos foram os poemas de Homero, a Ilíada e a Odisséia, baseados na guerra de Tróia e nas viagens de Ulisses. Tales de Mileto foi então considerado o primeiro grande filósofo grego. Também nessa época viveu, no continente, Hesíodo o escritor de A Teogonia e O Trabalho e os Dias, importantes registros da tradição mitológica e religiosa antiga.

Durante o chamado período clássico, no século V a.C., o continente foi invadido duas vezes pelos persas, que provocaram grande devastação. A guerra contra os persas fez com que as duas cidades mais poderosas, Atenas e Esparta, superassem suas divergências e se unissem contra o inimigo comum. Após sucessivas derrotas uma confederação de cidades gregas pôde finalmente rechaçar o inimigo persa, em 479 a.C., principalmente devido ao poderio grego em forças navais. Os gregos atribuíram sua vitória a seu amor pela liberdade, o que representou um forte estímulo à criatividade e unificação dos povos vencedores. Os gregos do período clássico se autodenominavam helenos chamando de Hélade o seu país. O nome Grécia foi usado pelos romanos que atribuíram a toda região o nome da primeira tribo que encontraram no continente.

As principais cidades-estados, Atenas e Esparta possuíam formas de governo e na cultura bastante diversos durante este período o que resultou em inúmeros conflitos. Esparta havia adotado um regime autoritário e militarista, incluindo o treinamento militar na formação de seus cidadãos mais jovens, enquanto Atenas vivia em regime democrático onde os cidadãos, ricos ou pobres, podiam participar na elaboração das leis e na direção da cidade. Atenas experimentou grande progresso durante o governo de Péricles, de 460 a 429 a.C., se transformando no centro político, econômica e cultural do mundo grego. A democracia reduziu os privilégios da aristocracia enquanto a vontade popular era livremente expressa nas assembléias. No entanto, apesar de seus esforços, Péricles não conseguiu unificar sob uma mesma bandeira os vários povos helênicos.

Gradualmente, após a vitória sobre os persas, as cidades se lançaram em divisões e conflitos internos que enfraqueceram a Grécia progressivamente. Após algum tempo o campo estava devastado e os pequenos proprietários rurais tendiam a desaparecer. Mercenários assolavam o campo e as cidades. A economia estava estagnada enquanto os menos favorecidos esperavam a assistência do estado. Nesta época surgiu entre os intelectuais, Platão, Isócrates e Xenofonte entre eles, a idéia da unificação grega sob a liderança de um líder carismático. Alexandre o Grande (356-323 a.C.) se propôs unificar sob seu poder todo o mundo civilizado. Para realizar este feito ele iniciou a conquista das cidades gregas e, em seguida, se lançou à conquista da Pérsia, atravessando a Ásia e estendendo seus domínios até a Índia.

O projeto de conquista promovido por Alexandre resultou na expansão da civilização grega para a Pérsia, Síria, Índia e Egito, dando origem à chamada civilização helenística. Esta ampliação dos limites de influência grega fez com que, mesmo depois de ter a Grécia perdido seu poder e independência política, sua língua e cultura ainda continuaram a influenciar toda a formação do mundo moderno. Após a morte de Alexandre na Babilônia em 323 a.C. as coligações gregas foram novamente dissolvidas e o país arrastado para novas guerras. Com isso, o império se dividiu apesar das inúmeras tentativas de novas reunificações, até a intervenção final e a ocupação do território pelos romanos.

As primeiras relações dos romanos com as cidades gregas foram amistosas. No entanto, em 215 a.C. Roma resolveu intervir militarmente em conflitos gregos internos. Os romanos seguiram a princípio uma política de prudência devolvendo a autonomia às cidades gregas. A partir de 146 a.C., porém, a Grécia foi submetida definitivamente ao domínio da república. Os romanos, apesar da dominação militar e política, sempre apreciaram a cultura grega e a cultivaram. O Império Romano que por um muito tempo dominou a maior parte do mundo conhecido, não promoveu grande aprimoramento das ciências e da matemática. No entanto eles assimilaram a cultura e a religião grega e a transmitiram para o restante do mundo.

A partir do século V d.C. a parte oriental do Império Romano se tornou relativamente independente de Roma, adotando como capital a cidade de Constantinopla ou Bizâncio. Eles adotaram a língua, a formação cultural e tradições gregas o que garantiu a transmissão deste legado cultural à Rússia e aos povos eslavos. O império bizantino se manteve durante toda a Idade Média até a tomada de Constantinopla pelos turcos otomanos em 1453. Com a queda do império os sábios bizantinos se refugiaram na Itália, contribuindo para a renovação do conhecimento sobre o pensamento grego clássico e a tradição jurídica romana no período conhecido como Renascimento, que então florescia no Ocidente. Vale lembrar que durante a Idade Média na Europa a maior parte dos textos clássicos, gregos e romanos, haviam sido destruídos pela intolerância e o fanatismo então reinantes.

(5) O conceito de democracia na Grécia era bastante diferente do que hoje possuímos. Grande parte do trabalho braçal era executada por escravos, em geral soldados derrotados nas guerras. As mulheres não participavam das decisões coletivas e nem podiam competir ou sequer assistir aos jogos olímpicos.
(6) O juramento de Hipócrates, que resume sua ética, é ainda hoje recitado nas colações de grau de estudantes de medicina.

O surgimento da democracia(5) foi essencial para o estímulo às ciências, matemática, artes e filosofia. As assembléias eram muitas vezes realizadas em praças públicas. As primeiras idéias filosóficas foram estabelecidas através da discussão sobre o mito primitivo, o que influenciou fortemente o caráter da filosofia. Ainda em resposta às tradições mitológicas e religiosas surgiu o teatro e a sátira, quase sempre atacando, ironizando ou simplesmente reformulando conceitos antes considerados intocáveis. Um exemplo importante desta tendência foi representado por Hipócrates (~460 a.C. – 377 a.C.) que se recusou a aceitar as interpretações mágicas e religiosas para as doenças aceitas na época, favorecendo a análise do organismo e a observação para a obtenção do conhecimento médico(6).

Origens arcaicas do pensamento científico

(7) A Homero (850 a.C.) atribui-se as obras Ilíada e Odisséia. Hesíodo (~800 a.C.) escreveu A Teogonia, um relato da formação dos deuses e do universo, e O Trabalho e os Dias, voltada para a descrição da formação da humanidade e a explicação da estrutura social entre os homens.

Assim como outros aspectos de sua cultura, a religião grega influiu de forma duradoura sobre as tradições religiosas posteriores e sobre o pensamento filosófico e científico. Em sua fase mais antiga, em um período anterior à palavra escrita, a tradição era transmitida pelos Aedos, sábios, profetas e curandeiros, que guardavam de memória os relatos contados por seus antepassados sobre a origem do universo, a criação do ser humano, seu objetivo e destino final. As narrativas escritas mais antigas hoje disponíveis, os textos de Homero e Hesíodo(7) são, em grande medida, uma coletânea destes relatos. Segundo Hesíodo no início dos tempos, antes que qualquer outra coisa existisse, havia o Caos, palavra geralmente traduzida como abismo ou hiato.

“Primeiro que tudo houve o Caos. Depois veio a Terra de amplos seios e Eros, o mais belo entre os deuses imortais. Do Caos nascem Érebo e a negra noite. Da Noite nascem Éter e o Dia. A Terra gera primeiro o Céu Constelado para que a cobrisse e fosse para sempre a mansão segura dos deuses. Depois gera as Montanhas e o Mar. …”

Tradução livre e abreviada de Cornford.

Da Terra (Gaia) nasceu Urano, o Céu, que contraiu matrimônio com sua mãe. Eles geraram os Titãs que foram escondidos pelo pai no ventre de Gaia. Entre eles Cronos se rebelou contra Urano e, depois de castrá-lo, passou a governar o universo. Posteriormente Cronos é destronado por seu filho Zeus, o fundador do panteão helênico clássico e governante do Olimpo.

Outras variantes para explicar a ordem atual das coisas podem ser obtidas de outras fontes, como por exemplo, na tradição órfica, uma das fortes influências do pensamento pitagórico. Em todos eles, entretanto, se pode encontrar um elemento comum: a origem em um princípio único, o “Indeterminado” de Anaximandro, ou o “Ovo Órfico”, mais arcaico, um elemento de difícil ou impossível apreensão pelo intelecto humano, com potencial de geração da polaridade ou oposição básica, tais como o Céu e a Terra (Urano e Gaia) de Hesíodo, ou o ar (frio) e o fogo (quente), capazes, por sua vez, de gerar pela sua interação a multiplicidade das coisas que existem. As novas gerações de Deuses suplantam e derrotam as gerações anteriores, instalando uma nova ordem no universo. Aos poucos a religião adquiriu sua característica de politeísmo antropomórfico onde os deuses eram movidos por interesses bem mundanos, pouco diferentes dos humanos ordinários.

O culto a Dionísio se firmou no continente por volta do século VIII a.C.. Nele se realizavam festejos e representações que buscavam celebrar e reconstituir a ordem cósmica, a origem do universo e do ser humano, e seu destino. Estes festejos deram origem, mais tarde, à representação teatral. Desenvolveram-se nos séculos seguintes os chamados mistérios de Elêusis, em torno de Deméter, símbolo da vida que se recolhe no inverno e renasce na primavera. O templo dedicado a Apolo, onde se encontrava o oráculo de Delfos, transformou-se no centro espiritual da Grécia. As consultas ao oráculo motivaram, muitas vezes, aprimoramentos do pensamento filosófico, científico e matemático.

No período helenístico, após as conquistas de Alexandre o Grande, houve um grande intercâmbio entre as culturas e mitologias de vários povos. Isto promoveu um sincretismo pacífico com o conseqüente aperfeiçoamento do pensamento grego e a sua difusão pelo resto do mundo.

Na visão grega o ser humano é “o centro do universo e a medida de todas as coisas”. Ele é composto de corpo e alma sendo que a alma é preexistente à formação do corpo. Em diversas vertentes a alma possui origem divina ou celeste e se encontra aprisionada à terra por meio do corpo. A contemplação da verdade, o amor à filosofia e ao belo são os elementos restauradores da liberdade perdida. Ao morrer a alma desce em forma de sombra para o reino de Hades onde são julgadas e, se condenadas, enviadas para o castigo no Tártaro. Caso contrário poderão desfrutar da bem-aventurança nos Campos Elísios.

(8) O teatro grego é considerado o modelo original do teatro no Ocidente e teve raízes em rituais tais como o culto de Dionísio. Restam hoje peças completas de Ésquilo (~526-456 a.C.), Eurípides (~484-406 a.C.) e Sófocles (~495-406 a.C.).
(9) No entanto, o processo de inteira libertação da crença de um deus que se envolve constante e pessoalmente no funcionamento do universo, por exemplo, no movimento dos astros, persiste até depois de Isaac Newton no século XVIII.

O surgimento da visão democrática e o despertar da liberdade de pensamento permitiram que os pensadores iniciassem uma crítica do pensamento arcaico, reformulando-o por pontos, procurando explicar de forma racional um aspecto ou outro da descrição antiga de mundo. Esta tendência surge, por exemplo, no teatro(8), onde as idéias mitológicas são expostas à crítica e até mesmo ao deboche e, mais tarde, no pensamento filosófico e científico.

O pensamento mitológico arcaico é uma tentativa de explicação do mundo. A reforma do pensamento primitivo é realizada gradualmente e cada novo avanço do pensamento se baseia na visão prévia do mundo, reformulando alguns aspectos e mantendo outros. A ênfase do relato mítico na origem única de todas as coisas se propaga para dentro da filosofia através do debate sobre o princípio essencial, travado entre os pré-socráticos, e exerce influência poderosa sobre o pensamento posterior até a modernidade. De certa forma a liberdade para pensar consiste em um rompimento com o substrato mitológico e religioso. O medo humano da interferência arbitrária de um deus em sua vida e no cosmos, e a prestação de contas na vida após a morte é impeditivo da investigação. É improvável que um grupo de pensadores, em qualquer época, procure explicações científicas para os fenômenos naturais se a crença em uma intervenção divina arbitrária é predominante. Um universo sem regularidade e movido por interesses arbitrários dos deuses não pode ser alvo de discussão científica(9).

Um das contribuições gregas para este processo consiste na crença de que o ser humano partilha com o universo o nous, a capacidade pensante, e, por isto, pode compreender o que nele ocorre. O pensamento religioso floresceu na Grécia até o fechamento das escolas pagãs pelo imperador bizantino Justiniano, no ano 529 da era cristã.

Pensadores pré-socráticos

Os pensadores que antecederam Sócrates foram responsáveis pela fundação do pensamento filosófico, científico e matemático e vão desde a escola de Mileto, no século VI a.C, até os sofistas do século V a.C.. Muitos deles viveram nas colônias gregas em Mileto, Samos e Eléia, entre outras. Entre os pré-socráticos destacam-se Tales, Pitágoras, Heráclito, Parmênides, Empédocles, Anaxágoras e Demócrito.

Tales de Mileto (624 a.C. – 547 a.C.)

Tales é considerado por muitos pensadores como sendo o primeiro filósofo, cientista e matemático. Ele foi o fundador da Escola Jônica que teve como estudantes Anaximandro e Anaxímenes. Nenhum dos escritos de Tales foi preservado e, mesmo nos tempos de Aristóteles, estes textos já estavam perdidos e, portanto, tudo o que sobre ele sabemos vem de relatos de outros filósofos ou historiadores(10).

(10) A principal fonte de informação sobre a matemática grega primitiva é o texto Sumário Eudemiano escrito por Proclo, sec. V d.C..
(11) Diógenes Laércio, século II d.C..

Heródoto relata que Tales foi um estadista de visão que defendeu a união das cidades jônicas na região do mar Egeu. Já Aristóteles afirmou ter sido ele o primeiro a defender que a água era a substância fundamental do universo e de toda a matéria. Segundo Proclo, Tales aprendeu no Egito o estudo da geometria que passou depois a ensinar na Grécia. Além disto ele teria descoberto diversas proposições por si próprio e seus métodos inovavam em generalidade. Alguns relatos descrevem que Tales teria predito um eclipse do Sol em 585 a.C., uma realização improvável quando analisada sob a luz do conhecimento moderno. Existem relatos interessantes sobre como Tales teria medido a altura das pirâmides egípcias observando “o comprimento de sua sombra no momento em que o comprimento de nossas sombras é igual à nossa altura”(11).

Figura 2: Semelhança de triângulos

Na versão apresentada por Plutarco, no entanto, Tales teria colocado uma vara na extremidade da sombra da pirâmide, estabelecendo triângulos semelhantes e deduzindo a altura procurada. Ele seria, segundo esta versão, o responsável pela descoberta e uso da semelhança de triângulos. Conta também a tradição que Tales mediu a distância de um navio até a praia, provavelmente usando semelhança de triângulos. Para medir esta distância ele teria procedido da seguinte forma: de um ponto O na praia se fixa o olhar no navio, em \(B\). Traça-se uma perpendicular \(OA\) a \(OB\) . De \(A\) se fixa o olhar para o ponto \(B\), onde está o navio. Por um ponto \(C\) escolhido na base \(OA\), traça-se o segmento \(CD\), paralelo à \(OB\), portanto perpendicular à base, cuidando-se para que \(D\) seja um ponto em terra firme e que a distância \(CD\) possa ser conhecida. Sendo os triângulos \(ACD\) e \(AOB\) semelhantes se pode medir a distância \(OB\), como na figura.

Muitos textos sobre a historia da antiguidade creditam a Tales o estabelecimento dos cinco teoremas seguintes:

  1. Um círculo é bissectado por qualquer um de seus diâmetros.
  2. Os ângulos da base de um triângulo isósceles são iguais.
  3. Ângulos opostos, formados por duas retas que se interceptam, são iguais.
  4. Dois triângulos que tem dois ângulos e um lado iguais são iguais.
  5. Um ângulo inscrito em um semicírculo é um ângulo reto.

Acredita-se hoje, no entanto, que não há evidências de que Tales tenha de fato proposto todos estes teoremas. Apesar da incerteza sobre a real contribuição deste pensador para a matemática é considerado certo que ele teve grande importância para a evolução do pensamento científico. Juntamente com seus contemporâneos ele desenvolveu uma concepção de mundo baseada no logos, palavra grega que significa razão, palavra ou discurso. O logos se contrapõe ao pensamento mitológico ou religioso, entendido como verdade revelada que não pode ser discutida ou criticada. Baseado na razão e na capacidade do ser humano de compreender, Tales efetuou uma tentativa para explicar racionalmente o universo sem o recurso a divindades ou outras forças alheias à natureza.

Figura 3: Teorema de Tales

Um exemplo deste pensamento lógico pode ser contemplado na demonstração da afirmação 3 listada acima, que afirma que ângulos entre duas retas que se interceptam são iguais. Pode parecer à primeira vista que a afirmação é óbvia e que não necessita de maior elaboração. Tales, no entanto teria argumentado que α + β é um ângulo raso, porque \(r\) é uma reta, enquanto γ + β também é raso porque porque \(s\) é reta. Igualando os dois ângulos se conclui que se α = γ.

Para explicar a multiplicidade do fenômeno natural e a mutabilidade das aparências, os filósofos da escola de Mileto buscaram um princípio unificador imutável, denominado arké, origem, substrato e causa de tudo o que existe. Tales propôs que a água era o princípio formador da matéria e do universo porque os seres quentes precisam da umidade, a morte traz o ressecamento, os germes são úmidos e os alimentos estão cheios de líquido. Ele julgava natural que as coisas se alimentassem da essência de onde provêm. A água é o fundamento da natureza e a terra repousa sobre a água.

Tales foi o primeiro a buscar explicação para a variedade dos fenômenos por meio de um número reduzido de hipóteses e, juntamente com outros filósofos, tentou encontrar uma explicação racional para tudo aquilo que antes deles era inteiramente explicado pelo mito. No entanto, apesar da relativa liberdade para questionar o que estava estabelecido, a racionalidade deste período não foi capaz de romper integralmente com o conceito arcaico de que na base da multiplicidade do fenômeno existe apenas um elemento primário, o princípio formador de tudo o que existe.

Pitágoras de Samos (~580 a.C. ~500 a.C)

Parte importante da história antiga da matemática grega foi perdida devido ao sucesso e ênfase que se deu ao texto de Euclides, A Geometria, escrito por volta de 300 a.C.. A principal fonte de informação é o Sumário Eudemiano, escrito por Proclo no séc. V d.C., que relata a existência do matemático e filósofo Pitágoras. Muito da vida de Pitágoras permanece imerso nas brumas da lenda e da tradição, sendo difícil até mesmo garantir sua existência histórica. Nenhum documento escrito por ele foi preservado até o presente embora se considere certo que sua sociedade existiu como um grupo fechado, que prezava o sigilo. Seus discípulos o tinham como um mestre dotado de poderes extraordinários, capaz de viajar fora do corpo e entrar em contacto deuses e demônios. Seus rituais de purificação incluíam o ascetismo e a apreciação da beleza e da verdade como forma de libertação da alma. Apesar de sua natureza mística e religiosa seus ensinamentos foram determinantes para a evolução da matemática posterior e da construção do pensamento filosófico e científico ocidental.

Supondo verdadeiro o que relata a tradição, Pitágoras nasceu aproximadamente em 580 a.C na ilha de Samos, uma das colônias na Anatólia, onde hoje se encontra a Turquia e teria sido um discípulo de Tales. Interessado em ciência e filosofia passou um período de sua vida peregrinando pelos santuários gregos, viajando depois pelo Egito, Fenícia, Babilônia, Índia e Pérsia, onde teria aprendido a matemática e o pensamento acumulado por aqueles povos. De volta a Samos ele procurou, sem sucesso, formar um grupo de discípulos. Alguns narradores relatam que ele pagou a um jovem para ser seu estudante, até que o aluno teria despertado seu interesse pela matemática e se oferecido para custear seus estudos. Perseguido pelo tirano Polícrates, principalmente devido a suas idéias sociais renovadoras, por volta do ano 530 a.C., Pitágoras emigrou para Crotona, ao sul da Itália. Lá conseguiu reunir um grupo significativo de seguidores que podiam entender suas doutrinas e contribuir para seu aperfeiçoamento. Com a ajuda de Milos, um homem rico da região e atleta famoso que também apreciava a filosofia, fundou uma comunidade ao mesmo tempo religiosa e filosófica que visava à reforma social e política da região.

Sua doutrina consistia de uma reforma do orfismo que, por sua vez, era uma modificação do culto a Dionísio. A obscuridade que cerca o pitagorismo se deve provavelmente ao caráter religioso e secreto da irmandade. Era comum que um discípulo adotasse o nome de seu mestre ou atribuísse a ele autoria de seus trabalhos, o que torna difícil a correta atribuição de autoria de teoremas e resultados científicos ou filosóficos. Pitágoras ensinava a transmigração das almas e estimulava os discípulos a levar uma vida de austeridade e ascetismo, incluindo a abstenção do consumo de carne. Ao se filiar ao grupo cada membro entregava para a comunidade todas as suas posses mantendo, no entanto, o direito de receber em dobro o que havia depositado se desejasse partir. Os membros, homens, mulheres e crianças de classes diversas, eram tratados com igualdade. Os novos discípulos deviam passar por um período de cinco anos apenas ouvindo e sem ter permissão para falar, enquanto aprendiam os conceitos básicos da doutrina e as normas de comportamento da comunidade. Após esta fase iniciavam o aprendizado de matemática e passavam de discípulos a mestres. Para definir seus propósitos, e os de seu grupo, Pitágoras cunhou a palavra filósofo, amante da sabedoria “pois, embora nenhum homem seja completamente sábio, em todos os assuntos ele pode amar a sabedoria como chave para os segredos da natureza”(12).

(12) Citado em O Último teorema de Fermat, Singh.
(13) Substância simples e indivisível.

Na busca pela substância primordial os diversos pensadores da época se revezavam escolhendo diferentes elementos como candidatos para o elemento essencial: Tales de Mileto propôs que a água era este elemento; Anaximandro se referia ao indeterminado, uma substância infinita que a tudo permeava; Anaxímenes o tomava como sendo o ar, que se tornando fogo podia mover todas as coisas; Heráclito afirmava que a transformação era o elemento essencial. A resposta pitagórica para este problema foi matemática: o essencial é o número! O número está por trás do fenômeno e é a base imutável deste mesmo fenômeno. Aritmética (como teoria dos números), geometria, música e astronomia eram as disciplinas básicas do programa de estudos pitagórico.

Os gregos faziam distinção entre a matemática como uma prática de efetuar cálculos com números (a aritmética) e o estudo das relações abstratas entre estes números (a logística), uma distinção que perdurou até meados do séc. XV. Atribui-se aos pitagóricos a fundação da teoria dos números. Eles se interessavam pelo estudo de propriedades numéricas e se aprofundaram neste estudo, em geral com objetivos místicos que hoje seriam considerados expúrios ou inválidos. Para a linguagem pitagórica, número é sinônimo de harmonia, entidades que, apesar de permanentes e invariantes, podem expressar o processo de permanente mutação da natureza. Inspirados pela tradição arcaica que apontava a Unidade como fonte geradora do universo os pitagóricos consideravam o número 1 como base e fundamento, a mônada(13) formadora de todos de todos os outros números. Combinações desta unidade e as razões entre os inteiros deveriam explicar toda a existência e daí o apreço pelos inteiros e os racionais. Entre os números mais importantes os pitagóricos se ocupavam dos inteiros perfeitos , ou números que são iguais à soma de seus divisores próprios. Exemplos de números perfeitos são

6 = 1 + 2 + 3/td>
28 = 1 + 2 + 3 + 4 + 5 + 6 + 7
496 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + … + 31
8128 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + … + 127.

Se a soma dos divisores de um número inteiro n é maior que o próprio n então ele é dito um número abundante, enquanto se esta soma é menor o número é chamado de deficiente. 12 é abundante pois seus divisores são 1, 2, 3, 4 e 6 cuja soma é 16, enquanto 10 é deficiente. Na tentativa de entender o significado mais profundo dos números perfeitos Pitágoras e seus alunos descobriram que as potências de dois, \(2^n\), são sempre ligeiramente insuficientes (a soma de seus divisores é sempre igual ao número menos um):

Número Divisores Soma
22=4 1, 2 3
23=8 1, 2, 4 7
24=16 1, 2, 4, 8 15
25=32 1, 2, 4, 8, 16 31

Euclides mostrou em Os Elementos, nono livro, que, se \(2^n-1\) é um primo então \((2^n – 1) 2^(n-1)\) é um número perfeito. Os pitagóricos também descobriram a existência dos números amigáveis. Dois números são amigáveis se cada um deles é a soma dos divisores próprios do outro. Por exemplo, 284 e 220 são amigáveis:

Número Divisores Próprios Soma
284 1, 2, 4, 71, 142 220
220 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110 284

 

(14) Um novo par de amigáveis (17296 e 18416) foi encontrado por Fermat, em 1636. Mais tarde se descobriu que o par já havia sido encontrado pelo árabe al-Banna no século XIII. Descartes e Euler retomaram este estudo fornecendo listas como diversos pares. Curiosamente o par (1184 e 1210) passou desapercebido até 1866, quando foi descoberto pelo adolescente italiano Nicolo Paganini (não o músico, de mesmo nome).

Acreditava-se, pelo menos em períodos posteriores, que dois indivíduos que usassem estes números gravados em um talismã teriam sua amizade fortalecida(14).
Os números figurados usados pelos pitagóricos são vistos como um primeiro elo de ligação entre a aritmética e a geometria. Eles tinham apreço pelos números triangulares e os quadrados, entre outros, e os utilizam em suas especulações filosóficas e demonstrações matemáticas.

Figura 4: Números Pitagóricos
Figura 5

Pode-se obter geometricamente, por exemplo, que todo o número quadrado é a soma de dois triangulares sucessivos, como mostrado na figura 5 ao lado para o caso de 52.
Muitos aspectos da teoria dos números nunca foram esclarecidos pelos pitagóricos ou mesmo por matemáticos de períodos posteriores. Como exemplo, embora existam infinitos números ligeiramente deficientes não se pode encontrar, até o presente, números ligeiramente excessivos, números cuja soma de seus divisores é sempre igual ao número mais um. Também não se mostrou que tais números não existem sendo que esta demonstração permanece como um problema em aberto na atualidade!

Como essência das coisas e sendo o número constituído da soma de pares e ímpares, todas as demais entidades da natureza deveriam encerrar em si tal oposição. O oposto na natureza poderia ser explicado pelo oposto nos números. O caráter dualista das coisas era compreendido e superado pela tese de que todas as antíteses observadas no universo cedem lugar a uma grande unidade harmônica, seu princípio fundamental, da mesma forma que os números pares e ímpares, antitéticos, se derivam da “unidade” primitiva. Nesse sentido todas as coisas são vistas como o ordenamento de átomos ou pequenas partículas ordenadas sob leis numéricas.

As maiores descobertas de Pitágoras e de seu grupo se encontram no domínio da geometria, especialmente nas relações entre os lados de um triângulo retângulo. O assim chamado teorema de Pitágoras era conhecido e utilizado na Mesopotâmia e no Egito para alguns casos particulares. Os gregos, no entanto, o generalizaram e apresentaram a sua prova. Não há unanimidade sobre qual demonstração teria sido feita por Pitágoras, mas muitos historiadores consideram que foi a seguinte: denotando por \(a, b\) e \(c\) os catetos e a hipotenusa de um triângulo retângulo dividimos de duas formas diferentes um quadrado de lado \(a + b\) como representado na figura 5.

Figura 5: Teorema de Pitágoras

O primeiro está dividido em seis partes e sua área é \(a^2 + b^2 + 2ab\). O segundo tem a área de quatro triângulos em cinza e do quadrado central de lado \(c\), sendo portanto \(2ab+c^2\).
Identificando as áreas obtidas temos
$$c^2 = a^2 + b^2$$.
Observamos que, para a realização desta demonstração, é necessário o conhecimento de alguns princípios básicos de geometria, tais como o de que a soma dos ângulos internos de um triângulo retângulo é igual a dois ângulos retos além de propriedades sobre retas paralelas. A descoberta destas propriedades é também atribuída aos pitagóricos, sendo que bem mais tarde elas foram listadas por Euclides em Os Elementos.

(15) Nenhuma das duas fórmulas fornece todos os ternos pitagóricos.

Ligado ao problema do triângulo retângulo está o de se encontrar os ternos pitagóricos \(a, b, c\) satisfazendo \(c^2 = a^2 + b^2\). A seguinte fórmula é atribuída aos pitagóricos:

$$m^2 + \left( \frac{m^2-1}{2}\right)^2 = \left(\frac{m^2+1}{2}\right)^2$$

onde os três termos são inteiros para \(m\) ímpar, constituindo um terno pitagórico. Acredita-se que Platão aperfeiçoou esta fórmula (15) para
$$(2m)^2+(m^2−1)^2=(m^2+1)^2,$$
que fornece ternos pitagóricos para qualquer inteiro \(m\).

Em sua exploração da natureza dos números os pitagóricos terminaram por contradizer uma de suas próprias teses. O teorema de Pitágoras mostra que um triângulo retângulo com dois lados iguais a um tem hipotenusa com comprimento igual a \(\sqrt 2\), um número que não pode ser colocado sob forma de uma razão ou quociente, sendo portanto um irracional. Platão atribui a Teodoro de Cirene a descoberta posterior de diversos outros irracionais, tais como \(\sqrt 3\),\(\sqrt 5\) e \(\sqrt 6\). A aceitação destes números foi um processo lento e difícil. Por algum tempo se tentou manter em sigilo a descoberta da incomensurabilidade ou seja, de números que não podem ser expressos como razões. Existem relatos de que um membro da comunidade teria sido morto ou banido por ter revelado o segredo a fora do círculo. Mais tarde, a busca pela quadratura do círculo, a construção de um quadrado com a mesma área que um círculo de raio dado, levou à descoberta de outro irracional, o número \(\pi\). A solução do problema foi encontrada por Eudoxo, um contemporâneo de Platão, aluno de Arquitas que, por sua vez, foi um dos pitagóricos. Ele generalizou a teoria das proporções para incluir os números irracionais, afirmando que
$$\frac{a}{b} = \frac{r}{s} \to as= br$$
mesmo que qualquer dos números envolvidos seja um irracional. Sabemos hoje que um irracional pode ser obtido como uma soma infinita de termos racionais. Mas os pitagóricos, e os gregos em geral, não conheciam o conceito de infinito ou de quantidades infinitesimalmente pequenas. Tais habilidades somente foram adquiridas com o desenvolvimento da definição de limites, no século XIX.

Acredita-se que uma demonstração da irracionalidade de \(\sqrt 2\), que já era conhecida na época de Aristóteles, foi produzido por um pitagórico. Ela consiste em supor que \(\sqrt 2 = \frac{a}{b}\), \(a\) e \(b\) são primos entre entre si. (Se não fossem a fração poderia ser simplificada dividindo-se ambos os números pelo fator comum.) Então
$$a = 2\sqrt b \to a^2=2b^2.$$
Sendo \(a^2\) o dobro de um inteiro ele deve ser par de onde se conclui que \(a\) é par. Escrevemos \(a=2c\) e a última equação se torna
$$4c^2=2b^2\to2c^2=b^2.$$
Dai se observa que \(b^2\) é par e, portanto, \(b\) é par. Esta é uma contradição visto que a fração \(\frac{a}{b}\) foi suposta irredutível. Como conclusão \(\sqrt 2\) não pode ser um racional.

Os pitagóricos, observando a relação entre notas musicais e o comprimento das cordas do tetracórdio, uma lira de quatro cordas usada na época, sugeriram que a mesma harmonia deveria existir em todo o universo. Por exemplo, uma corda que ressoa com a nota , se presa pela metade, vibra em um dó mais agudo, uma oitava acima. Derivam dai os termos “funções harmônicas” e “progressão harmônica”, usados até hoje na matemática. O corpo humano com saúde, por exemplo, é uma harmonia que, quando rompida, deve ser restabelecida pela medicina.

A observação dos astros sugeriu a idéia de que o universo é, em grande escala, dominado pela ordem. Eles acreditavam, assim como o fizeram pensadores até o Renascimento, que os objetos celestes eram perfeitos e divinos. A sucessão de dias e noites, o alternar das estações e o movimento circular e perfeito das estrelas sugeriam esta conclusão. Por isto o mundo era o Kósmos, termo que implica em ordem, perfeição e beleza, em oposição ao Caos o falta de diferenciação ou estrutura original de onde o universo teria brotado. A cosmologia pitagórica ensinava que a Terra, juntamente com o Sol e as outras estrelas, gira em torno um fogo central. As distâncias entre os astros e o fogo central coincidem com intervalos musicais e o comprimento das cordas de um instrumento e, portanto, o universo ressoa como uma harmonia celeste(16) . Há referências de que autores pitagóricos afirmavam que a Terra é esférica e gira sobre seu eixo.

(16) Dai surgiu a expressão “harmonia das esferas”.
(17) A palavra física vem do grego physis, natureza.
(18) Alguns textos relatam que Pitágoras teria sido morto durante o ataque.

O conceito de que os números estão por trás de tudo e que as equações podem explicar o comportamento da natureza é a contribuição básica dos pitagóricos para a matemática e a ciência moderna em geral. Sem esta crença os pensadores nunca se lançariam à procura de novos modelos e novas ferramentas para a descrição da multiplicidade dos objetos observados no mundo. A matemática é hoje vista como uma linguagem para a construção de modelos de precisão na maior parte da ciência contemporânea, em particular para a física(17).

A irmandade pitagórica foi desfeita por uma conspiração que, segundo alguns relatos, foi iniciada por um candidato que teve seu pedido de ingresso na escola de Crotona recusado. Houve na época uma revolta na cidade vizinha de Síbaris forçando muitos de seus habitantes a se refugiarem em Crotona, o que levou a um ataque ao grupo. Milos conseguiu derrotar os invasores mas a discussão sobre o espólio de guerra e a desconfiança dos cidadãos de Crotona não membros, que temiam que as riquezas fossem todas destinadas a Pitágoras, os levou a invadir e destruir a comunidade. Alguns discípulos emigraram e o próprio Pitágoras foi desterrado(18) para Metaponto, onde morreu por volta do ano 500 a.C.. A escola e irmandade continuou a existir e a influenciar o pensamento da época por mais dois séculos, pelo menos.

Parmênides de Eléia (séc. VI a.C.)

Parmênides nasceu em Eléia, onde se acredita que fundou uma escola semelhante aos institutos pitagóricos para o ensino da dialética. Sua única obra conhecida é um longo poema filosófico em duas partes e 150 versos, chamado Da natureza ou Sobre a verdade, do qual só restam fragmentos. Parmênides defendia que só era real o que pudesse ser compreendido pela razão, inaugurando assim o pensamento metafísico mais tarde sistematizado por Platão, que entende como ilusório o mundo dos sentidos.

Como outros pensadores pré-socráticos ele enfrentou a questão central da busca de arké, um princípio subjacente a todas as coisas, e a determinação de como este princípio único dava origem à realidade do mundo físico, com sua multiplicidade de seres e objetos em constante mutação. Para Parmênides só existe a Unidade, o ser, que ele identifica com o pensamento, pois só se pode pensar sobre o que existe. Esse ser é eterno, imóvel, imutável, homogêneo e esférico, no sentido de que é fechado em si mesmo. Como o Ser não pode se alterar então o aparente movimento das coisas não passa de um engano dos sentidos. Nesse aspecto ele se opunha a Heráclito para quem a mudança era o princípio fundamental da realidade.

Zenão de Eléia (490 a.C. – 425 a.C.)

Zenão foi discípulo de Parmênides e com ele aprendeu a doutrina monista de que todas as coisas que parecem existir são apenas aspectos do Ser único e eterno no qual a modificação e o não ser são impossíveis. Nenhum de seus textos foi preservado e o que dele se sabe foi extraído de relatos de filósofos posteriores, em particular de Platão. Segundo a narrativa de Proclo ele descreve quarenta paradoxos que questionam a crença na continuidade e divisibilidade do espaço. Estes paradoxos tiveram forte influência na evolução posterior do pensamento matemático.

A argumentação de Zenão sob forma de paradoxos estava destinada a atacar a concepção de que o mundo contém mais do que uma única coisa. Ele argumentava que se alguma magnitude pode ser dividida então ela pode ser dividida infinitas vezes, enquanto que algo sem magnitude não pode existir. Nas palavras de Simplício, o último diretor da escola platônica, (sec. VI d.C.),

“[… algo sem magnitude], se acrescentado a alguma coisa não o tornará maior, se subtraído não o tornará menor. … Fica claro neste caso que o que foi acrescentado ou subtraído não é coisa alguma!”

Embora estes argumentos possam parecer pouco convincentes para a mente moderna, eles estimularam o aperfeiçoamento dos conceitos defendidos por aqueles que não acreditavam no Unitarismo de Parmênides.

Zenão se referia a paradoxos referentes ao movimento: “Nenhum movimento é possível, pois o que se move deve primeiro alcançar a metade do caminho antes de alcançar seu destino”. Repetindo o mesmo processo infinitas vezes ele concluía pela impossibilidade de um deslocamento, pois o objeto teria que executar infinitas operações em um intervalo finito de tempo. O paradoxo de Aquiles e a tartaruga contém um conteúdo similar: o corredor veloz nunca poderia alcançar a tartaruga que tivesse partido em sua frente pois, quando Aquiles atinge o ponto de partida da tartaruga esta já teria se deslocado para frente, e assim sucessivamente.

A solução de Zenão para o paradoxo se baseava na crença da Unidade Indivisível onde o movimento não era possível porque não havia partes separadas do espaço de onde e para onde um objeto pudesse viajar. Uma resposta histórica para este problema se deu na criação da teoria atômica, que sustentava que a matéria era constituída por blocos indivisíveis. Neste caso ela poderia ser dividida, mas não infinitamente.

Portanto os paradoxos foram importantes para impulsionar as noções de limite e do cálculo diferencial. Alguns autores sustentam que Zenão dirigia seus ataques particularmente aos pensadores de seu tempo que cogitavam no uso de quantidades infinitesimais. O conceito dos incomensuráveis de Anaxágoras e dos seguidores de Pitágoras também eram um alvo destas críticas.

Acredita-se hoje que os filósofos gregos posteriores a Zenão não perceberam plenamente a importância e o significado dos desafios por ele propostos. Muitos o julgaram um mero malabarista de conceitos e um manipulador de sofismas. No entanto sua contribuição é hoje plenamente reconhecida e a completa solução de seus paradoxos somente se deu muito recentemente, no século XIX, com o aprimoramento do conceito de limite.

Zenão também apresentou um sistema cosmológico onde o universo era descrito como composto por vários “mundos” feitos de calor, frio, umidade e secura, mas sem admitir em qualquer região o espaço vazio. Esta parece ser uma crença comum em torno do século V a.C. entre membros da escola Eleática e não há consenso de que tenha sido realmente proposta por Zenão.

Anaxágoras (c.500-c.428 a.C.)

Nascido em Clazômenas por volta do ano 500 a.C. Anaxágoras foi um dos responsáveis pela introdução em Atenas das concepções desenvolvidas pelos pensadores das colônias. Ele era a figura principal do grupo de intelectuais reunidos em torno de Péricles, o governante que promoveu a democracia estimulando a busca do conhecimento. Poucos fragmentos sobraram de sua obra e muita controvérsia existe sobre sua real contribuição. Juntamente com os filósofos de Mileto ele sustentava que a experiência dos orgãos dos sentidos coloca o ser humano em contato com uma realidade impermanente, cuja constituição última ele buscava encontrar.

Anaxágoras ensinava que “nada vem à existência nem é destruído, tudo é resultado da mistura e da divisão”. A pluralidade de seres no mundo real é apenas o produto de ordenações e reordenações sucessivas dos princípios básicos existentes. Nada pode chegar a ser aquilo que não é ou deixar de ser o que é. Ele defendeu a idéia de que existe um princípio ordenador junto à matéria, um nous ou “inteligência”, como causa do movimento e por isso foi chamado de o primeiro dualista. Na descrição de Platão, Anaxágoras recorria a essa tese para explicar a origem do movimento no universo, sem o qual o universo ficaria abandonado a forças mecânicas. As opiniões científicas de Anaxágoras terminaram por se chocar com as concepções religiosas da época, o que lhe custou um julgamento por ateísmo. Graças à ajuda de Péricles ele conseguiu se refugiar em Lâmpsaco, onde morreu por volta de 428 a.C..

O conceito de Nous ou inteligência por trás da matéria representa um passo importante para a criação de um ambiente propício para o surgimento do pensamento científico. Primeiro, o universo deve ser ordenado o suficiente para que possa ser alvo de investigação. Segundo é necessário que a inteligência tenha instrumentos de captação da realidade compatíveis com o que ocorre no mundo objetivo, caso contrário não teria como estabelecer com ele qualquer relação.

Anaximandro de Mileto (610- c.546 a.C.)

Anaximandro de Mileto é considerado o fundador da astronomia e o primeiro pensador a desenvolver uma cosmologia, ou visão filosófica sistemática do mundo. Nascido em Mileto no ano 610 a.C., foi discípulo de Tales, o fundador da chamada “escola de Mileto”. Ele teria escrito tratados sobre geografia, astronomia e cosmologia que permaneceram como fonte de inspiração para outros filósofos por vários séculos. Racionalista que prezava a simetria, ele utilizou as proporções geométricas e matemáticas na tentativa de mapear o céu, abrindo o caminho para os astrônomos posteriores.

Em sua teoria o mundo era derivado de uma substância imponderável, denominada apeiron (o ilimitado), matéria eterna e indestrutível, anterior à “separação” dos contrários, como quente e frio, seco e úmido. Ela representava a unidade primordial por trás da aparente diversidade dos fenômenos. Todos os elementos antagônicos estavam contidos no apeiron, que não tinha princípio nem fim.

A ele se atribui a descoberta de que a eclíptica é oblíqua ou seja, de que o eixo de rotação da Terra não é exatamente perpendicular ao plano da órbita em torno do Sol, sendo que a maioria dos planetas estão aproximadamente neste mesmo plano. Além disto ele inventou o quadrante solar e idealizou os primeiros mapas geográficos. Uma de suas afirmações era de que a Terra permanecia em repouso no centro do universo porque não tinha motivo para se mover em nenhuma direção. Com suas hipóteses sobre a transformação de espécies inferiores em superiores ele antecipou o conceito de evolução de Darwin.

Anaxímenes de Mileto (séc. VI a.C.)

Juntamente com Tales e Anaximandro, Anaxímenes formou o trio de pensadores tradicionalmente considerados os primeiros filósofos do mundo ocidental. De seus tratados só subsistiram citações em obras de autores subseqüentes, daí os conflitos na interpretação de suas idéias.

Ele ensinava que o ar era o elemento primordial, base de todas as coisas que dele resultavam e a ele retornavam, por um duplo movimento de condensação e rarefação. Os graus de condensação correspondiam às densidades de diversos tipos de matéria. Quando distribuído mais uniformemente era o ar atmosférico invisível. Por condensação se tornava visível, a princípio como névoa ou nuvem, em seguida como água e depois como matéria sólida – terra e pedras. Em sua fase mais rarefeita se transformava no fogo. Bom observador, ele afirmou que o arco-íris não era uma deusa, mas o efeito dos raios de sol sobre um ar mais denso.

Heráclito de Éfeso (c.540-c.480 a.C.).

Considerado o último dos grandes pensadores da Escola Jônica Heráclito era filho de aristocratas. Os modernos historiadores do pensamento grego costumam tratar Heráclito como o primeiro filósofo a propor uma visão dialética do mundo. No século XIX, Hegel o apontou como um precursor de suas próprias concepções. Heráclito ridicularizava os cultos e ritos de seu povo e, por ter um estilo de difícil compreensão, foi chamado de “o obscuro”. Da obra que lhe é atribuída, restam apenas alguns fragmentos do livro Peri physeos (Da natureza), que se dividiria em três partes: o universo, a política e a teologia.

As histórias da filosofia apresentam Heráclito como um pensador de posições opostas às de Parmênides. Se este era o filósofo do ser, Heráclito era o do vir-a-ser, do devir. Para ele, tudo está em contínuo movimento, tudo flui. Ninguém se banha duas vezes no mesmo rio, porque tanto o rio quanto a pessoa mudam incessantemente.

Heráclito considerava como substância única, ou arkhé, o fogo, definido como mobilidade e inquietação. O próprio ar transforma-se em outros elementos e estes, em mudanças sucessivas, chegam ao fogo. Tais mudanças, porém, não se fazem ao acaso. A marcha e a ordem dos acontecimentos são guiadas pelo logos, essência racional do Universo, expressa pelo fogo. Do ponto de vista ético, a virtude consiste na subordinação do indivíduo a essa razão universal. O mal, segundo Heráclito, está em que muitos querem viver como se fossem seu próprio logos, isto é, o centro dos acontecimentos. Heráclito morreu em Éfeso por volta de 480 a.C..

A Idade Heróica da Filosofia

Com a importação das idéias filosóficas vindas das colônias e o fortalecimento do regime democrático impulsionado pela administração de Péricles, a civilização helênica, principalmente em Atenas, viveu uma época de esplendor e efervescência cultural. Entre as reformas implantadas pelo regime democrático figurava a criação do tribunal popular dos heliastas, cidadãos que se reuniam ao ar livre para deliberar sobre assuntos da cidade.

No governo de Péricles, Atenas entrou em uma fase expansionista, monopolizando o comércio marítimo e tiranizando seus aliados da confederação de Delos. Essa política levou a um longo conflito armado com Esparta, conhecido como guerra do Peloponeso. Também neste período a peste dizimou grande parte da população ateniense. Outra fonte de conflitos foi o fato de que apenas os cidadãos de Atenas, menos de dez por cento da população, tinha total direito à cidadania. Os demais habitantes eram estrangeiros, os filhos destes e os escravos e estava excluída da maioria dos benefícios destinados ao cidadão. Neste período, embora curto, floresceu a mais importante escola de pensamento da antiguidade e surgiram os três maiores pensadores da Grécia Antiga, Sócrates (c.470-c.399 a.C.), Platão (c.428-c.348 a.C.) e Aristóteles (384-322 a.C.), os responsáveis pelo estabelecimento dos fundamentos filosóficos da cultura ocidental.

Sócrates (c.470-c.399 a.C.)

Sócrates nasceu em Atenas por volta do ano 470 a.C.. Como não deixou obras escritas, tudo o que se sabe de sua vida e de suas idéias é o que relatam principalmente autores como Platão e Xenofonte. Sócrates gozava de muita popularidade em Atenas e vivia cercado de seus jovens discípulos, embora seus ensinamentos também lhe valessem grande número de inimigos. Passava a maior parte do tempo ensinando em lugares públicos, como praças, mercados e ginásios, mas ao contrário dos filósofos profissionais – os sofistas, que combatia com vigor – não cobrava por suas lições.

Se os filósofos anteriores buscavam obsessivamente uma explicação para o mundo natural, para Sócrates a especulação filosófica deveria se voltar para assunto mais urgente: o ser humano e os temas a ele concernentes, como a ética e a política. Sócrates dizia que a filosofia não era possível enquanto o indivíduo não se voltasse para si próprio e reconhecesse suas limitações. “Conhece-te a ti mesmo” era seu lema. Conta-se que Sócrates, quando jovem, foi visitar o Oráculo de Delfos que o teria apontado como o mais sábio de todos os homens. Sócrates reagiu afirmando “Só sei que nada sei” e, a partir daí, passou a entrevistar as pessoas supostamente sábias para encontrar alguém que fosse mais sábio que ele. Assim, ele se voltava para as pessoas e os interrogava a respeito de assuntos que eles julgavam saber. Seu senso de humor confundia os interlocutores que acabavam confessando sua ignorância, da qual Sócrates extraía sabedoria. Com isto ele desenvolveu um método de argumentação, ensino e pensamento através do qual se pode extrair da pessoa que ouve um entendimento que, a princípio, ela já possui.

O exemplo clássico da aplicação do método socrático está relatado no diálogo platônico intitulado Mênon, no qual Sócrates leva um escravo ignorante a descobrir e formular vários teoremas de geometria. A indução, finalmente, consiste na apreensão da essência (do universal que se acha contido no particular), na determinação conceitual e na definição. A teoria socrática das essências preparou a teoria platônica das idéias.

Sócrates lançou as bases do racionalismo idealista, desenvolvido mais tarde por Platão. O método e as intenções de Sócrates constituíram o início da reação helênica contra o relativismo defendido pelos sofistas, que havia levado o pensamento filosófico à ruína. Diante do crescente individualismo e da crise de valores que ameaçavam a democracia ateniense, depois do declínio do culto às divindades gregas, questões sobre a melhor forma de governo e a moral individual tornaram-se prementes. Entretanto, a resposta de Sócrates, que pregava um sistema moral absolutamente alheio às doutrinas religiosas e admitia a aristocracia – governo dos melhores – como a forma desejável de administração do estado, fez com que se indispusesse com as autoridades conservadoras, o que lhe custou a vida.

No ano de 399 a.C. Sócrates foi acusado de corromper a juventude e desdenhar o culto aos deuses tradicionais. O processo foi montado de modo a forçar o pensador a contrariar suas idéias e a retratar-se. A maioria dos comentadores concorda que ele teria sido poupado se não se mostrasse tão inflexível. Sócrates manteve diante do tribunal a mesma postura irônica de sempre, o que aumentou a irritação dos juízes. O tribunal perguntou ao réu que pena ele considerava justa para si próprio. Sócrates respondeu que, tendo prestado tantos serviços à cidade, achava justo receber uma pensão vitalícia do estado. Além disso, declarou que não aceitaria o degredo. Foi o bastante para que o tribunal o condenasse à morte. Como sentença ele foi obrigado a beber uma taça de cicuta, um veneno mortal. Na prisão continuou a receber amigos e discípulos para debater assuntos como a morte e a imortalidade da alma.

Sócrates não foi particularmente devotado à matemática ou à ciência, estando sempre mais voltado para as questões éticas e do autoconhecimento. No entanto sua postura inquiridora impulsionou seus discípulos, especialmente Platão, a continuar o avanço do entendimento sobre o ser humano e seu contato com o universo.

Platão (c.428-c.348 a.C.)

Platão nasceu em Atenas por volta do ano 428 a.C. e, aos 18 anos, conheceu Sócrates, que foi seu mestre até ser condenado à morte. Após a morte do mestre Platão peregrinou por diversas partes da Grécia, tendo estado em contato com os pitagóricos de Siracusa, no sul da Itália.

De volta a Atenas fundou a Academia, uma escola destinada à investigação filosófica, e a dirigiu pelo resto da vida. Em sua Academia o conhecimento da matemática era amplamente estimulado, especialmente da geometria. A obra de Platão foi escrita sob a forma de diálogos e, diferente do que ocorreu com a maioria de seus antecessores, seus textos foram conservados na totalidade. Em linha geral eles se dividem da seguinte forma:

  1. Diálogos socráticos ou de juventude, nos quais a figura e a doutrina de Sócrates ocupam lugar de destaque: Apologia de Sócrates, Protágoras, Trasímaco, Críton, Íon, Laques, Lísis, Cármide, Eutífron e os dois Hípias.
  2. Diálogos construtivos ou da maturidade: Górgias, Ménon, Eutidemo, Crátilo, Menéxeno (nem sempre aceito como de autoria de Platão), O banquete, A república, Fédon e Fedro. Nos quatro últimos, a teoria das idéias aparece exposta em sua forma mais característica.
  3. Diálogos tardios, grupo que, iniciado com Teeteto, inclui os escritos elaborados durante a velhice de Platão e nos quais ele faz a revisão crítica da teoria das idéias: Parmênides, Sofista, Filebo, Político, Timeu, Crítias e as leis.

A filosofia de Platão está centrada sobre um propósito principal: o conhecimento das verdades essenciais que determinam a realidade – a ciência do universal e do necessário – para poder estabelecer os princípios éticos que devem nortear a realidade social, em busca da concórdia numa sociedade em crise. Como primeiro passo para sua metafísica, Platão considerou necessário elaborar uma teoria do conhecimento. Uma vez que os sentidos nos revelam as coisas como múltiplas e mutáveis, ao passo que a inteligência nos revela sua unidade e permanência, procurou uma solução que conciliasse o testemunho dos sentidos e as exigências do conhecimento intelectual. Baseou-se nos conceitos matemáticos e nas noções éticas para demonstrar que existe uma essência real e eterna das coisas. Como argumento ele usou a possibilidade de pensar em figuras geométricas puras, que não existem no mundo físico. Em seguida ele concluiu pela existência de um mundo de essências imutáveis e perfeitas, o mundo arquetípico, constituído pela realidade inteligível (os objetos do conhecimento científico ou epistemológico). O mundo sensível, o objeto da opinião, copia de forma imperfeita as leis deste mundo arquetípico superior. O ser humano, por possuir corpo e alma, pertenceria ao mesmo tempo a esses dois mundos.

Segundo Platão a alma é anterior ao corpo, e antes de aprisionar-se nele, pertenceu ao mundo das idéias. Sua natureza é tríplice: no nível inferior está a alma das sensações, onde residem os desejos e as paixões; em seguida há a alma irascível, que impele à ação e ao valor; e acima delas está a alma racional, que pertence à ordem inteligível e permite ao homem recordar sua existência anterior (teoria da reminiscência) e ter acesso ao mundo das idéias mediante o cultivo da filosofia. A alma superior é imortal e retornará à esfera das idéias após a morte do corpo. A admiração teórica do bom, do belo e do verdadeiro é principal forma de retorno da psique (a alma) à sua glória anterior, perdida quando ela se envolve com a turbulência e a contingência da vida comum, mergulhada no mundo dos sentidos. A matemática, por ser uma descrição direta desta realidade considerada superior, tem papel de destaque no pensamento platônico.

Muito do ensinamento de Platão se refere á ética e a política, com aplicações à vida comunitária nas cidades e do relacionamento entre os cidadãos. Ele foi um dos filósofos mais influentes de todos os tempos. Seu pensamento dominou a filosofia cristã antiga e medieval. Platão morreu em Atenas, em 348 ou 347 a.C.

Aristóteles

Aristóteles nasceu em Estagira, Macedônia, em 384 a.C. e durante vinte anos foi discípulo de Platão. Com a morte do mestre passou a ensinar suas próprias doutrinas, tendo sido instrutor de Alexandre, o Grande. Em 333 voltou a Atenas, onde fundou o Liceu. Durante 13 anos dedicou-se ao ensino e à elaboração de suas obras principais. Seu pensamento se caracterizou pelo rigor de sua metodologia, pela variedade dos temas considerados e pelo esforço em considerar todas as manifestações do conhecimento como ramos de um tronco comum.

Todas as obras de Aristóteles se perderam, exceto A Constituição de Atenas, descoberta em 1890. Os textos hoje disponíveis foram coletados de anotações feitas por alunos e conferências compiladas por discípulos e historiadores posteriores. Seus principais textos são dedicados á lógica, filosofia da natureza (Física), psicologia e antropologia, sobre a alma, zoologia, poética, ética, política e Metafísica.

No que se refere ao conhecimento científico Aristóteles contribuiu procurando buscou resolver o problema do conhecimento, da possibilidade do ser subjetivo conhecer algo a respeito do mundo objetivo, a natureza. No dualismo platônico o mundo da inteligência se encontra separado do das coisas sensíveis. O realismo de Aristóteles procura estabelecer a possibilidade do conhecimento através da experimentação, a verificação de como se comporta a physis, a natureza. Por este motivo vários historiadores o consideram o primeiro pesquisador científico, no sentido atual do termo.

Nos primeiros séculos da era cristã as considerações de Aristóteles sobre a lógica foram reunidas sob a denominação de Órganon – já que se considerava a lógica um instrumento da ciência, um órganon. Nesta obra ele estuda e classifica os diferentes modos de atribuição de um predicado a um sujeito e esboça a teoria do silogismo. Essa teoria busca demonstrar a correção formal do raciocínio, independentemente de sua verdade objetiva. Assim, se todo B é A e se todo C é B, então todo C é A. A primeira proposição é a maior; a segunda, a menor; e a última, a conclusão. Todo o saber, no entanto, depende de princípios indemonstráveis mas necessários a qualquer demonstração: os axiomas.

Em sua filosofia da natureza Aristóteles sustenta que a mudança nos seres não contraria o princípio de identidade ou unidade fundamental de todos as coisas, mas representa a atualização da potência nelas contidas previamente. A partir daí, o filósofo apóia sua física em duas teorias filosóficas: a da substância e do acidente, e a das quatro causas. A substância existe por si, é o elemento estável das coisas. O acidente é a variação e a mudança, motivada pelo que existe em potencial. Graças à união entre os dois princípios a substância se manifesta através dos acidentes, o ser e a atuação do ser.

O físico deve possuir um acurado espírito de observação. A natureza é autocriada, e o ser potencial que nela atua é o movimento que se manifesta como aumento e diminuição ou, na modificação espacial, como movimento. Sobre o movimento Aristóteles acreditava que o estado natural de um corpo era em repouso e que ele não poderia permanecer em movimento sem a ação constante de uma força. Paradoxalmente, embora tenha defendido a observação da natureza para consolidação de uma teoria não ocorreu a Aristóteles realizar experimentos para a verificação deste conceito, o que só foi feito muito mais tarde por Galileu Galilei.

Com a morte de Alexandre em 323 a.C. Aristóteles teve de fugir à perseguição dos democratas atenienses, refugiando-se na cidade de Cálcide, onde morreu em 322 a.C.

Evolução da Matemática

Enquanto os conhecimentos sobre o Egito e Mesopotâmia foram fortemente impulsionados pela descoberta de documentos arcaicos, tais como o papiro de Ahmés e a pedra da Rosetta, nenhum dos textos originais gregos foi preservado até o presente. A grande maioria das fontes originais foi destruída durante a Idade das Trevas, sob a motivação do fanatismo religioso e do obscurantismo. As referências hoje disponíveis sobre o pensamento grego provêm de manuscritos bizantinos, escritos em média mil anos após sua elaboração original, e as traduções árabes dos textos clássicos gregos e romanos. O estudo dos primeiros pensadores é particularmente difícil e muito do que se acredita a respeito destes sábios provém de lendas e relatos indiretos. A reconstrução da informação é difícil e incerta devido a diversos fatores. O ensinamento de algumas escolas do período mais antigo era considerado secreto e os discípulos eram impedidos, por meio de votos de silêncio, de divulgar livremente o que haviam aprendido, como era certamente o caso da escola pitagórica. Grande parte do ensinamento era oral e pouca coisa foi colocada por escrito como medida de segurança. Para confundir ainda mais o historiador havia o hábito de se atribuir autorias incorretas a alguns desenvolvimentos. Um exemplo disto era a prática comum de se atribuir ao mestre a realização de um de seus discípulos, ou ainda, que um pensador desconhecido atribuísse a um professor de renome a sua descoberta, buscando com isto valorizá-la.

(19) Cidadãos eram os homens, maiores de idade, que haviam servido o exército. Mulheres e escravos não partilhavam destas vantagens.
(20) A crença na razão é necessariamente uma crença no poder unificador na mente. Deve ser possível explicar a grande variedade de fenômenos observados no mundo externo por meio de um número finito, de preferência um número pequeno de modelos, de teorias ou conceitos.

O estudo da história indica que o contato grego, ocorrido a partir do século VI a.C. com os persas, na Jônia, permitiu a transmissão das idéias científicas e tecnológicas acumuladas pelas civilizações mais antigas do Oriente Médio e, provavelmente, do Extremo Oriente. Este conhecimento se somou à cultura e tecnologia já trazidas pelos primeiros invasores do norte. Impulsionados por sua curiosidade, por uma atitude racionalista e a crença na capacidade do ser humano de entender o mundo e a si próprio, os gregos revolucionaram o pensamento científico e matemático. A relativa estabilidade política contribuiu para o fortalecimento das liberdades individuais do cidadão(19) e favoreceram o rompimento com a tradição arcaica transmitida pelo mito e pela religião, criando o terreno propício para a evolução das artes, da filosofia e das ciências, entre elas a matemática. A mentalidade grega abrigava a crença na racionalidade(20) humana, na capacidade de se compreender o mundo e a si próprio. De inspiração mais filosófica e menos pragmática a matemática adquiriu na Grécia seu caráter de ciência abstrata com bases e metodologia de desenvolvimento bem fundamentadas.

Com a invasão dos Dórios, em torno de 1200 a.C., muitos dos habitantes do continente fugiram para as ilhas jônicas e a costa da Ásia Menor, onde fundaram colônias. Nestas colônias se deu a formação da escola jônica onde floresceu a filosofia e a geometria demonstrativa. Com o crescimento do poderio militar persa e das invasões por eles efetuadas, muitos pensadores, como Pitágoras e Xenófanes, abandonaram sua terra natal e se transferiram para as colônias gregas no sul da Itália. Pitágoras deu início à escola em Crotona enquanto Xenófanes, Zenão e Parmênides lideraram a escola de Eléia. No séc. VI a.C., principalmente com as contribuições de Tales e Pitágoras, a matemática passou por uma profunda transformação adquirindo o espírito crítico e a liberdade da criatividade e assumindo muitas das características que possui até o presente. Na nova abordagem se tornou importante o estabelecimento de definições precisas, a explicitação dos pressupostos ou axiomas e o uso do pensamento lógico-dedutivo para extrair as conseqüências possíveis e necessárias. A pesquisa matemática passou a ser feita através de uma formulação clara dos problemas a serem considerados e incluía uma distinção nítida entre uma conjectura e um teorema demonstrado.

A luta contra os persas, no entanto, teve grande duração. A cidade de Atenas, que havia se destacado pela evolução social, política e científica, liderou uma reação contra os invasores, consolidando sua hegemonia sobre as demais cidades-estados. Durante o regime de Péricles a cidade se tornou o centro cultural na Grécia, criando um ambiente que atraiu muitos matemáticos, entre eles Anaxágoras, o último membro eminente da escola jônica, Zenão e Parmenides, da escola eleática, e diversos pitagóricos. Este período de estabilidade durou até o início da guerra do Peloponeso, travada entre Atenas e Esparta, iniciada em 431 a.C. e finalizada em 404 a.C., com a vitória de Esparta, uma cidade voltada para o militarismo e pouco dedicada ao pensamento científico. Esparta manteve o poder até 371 a.C. quando foi derrotada por uma liga de cidades rebeldes. Durante o período de conflitos mais acirrados poucas contribuições para o avanço da matemática são registrados.

Terminada a guerra do Peloponeso Atenas retomou sua liderança intelectual. Ali nasceu Platão em 427 a.C., ano em que uma grande peste se abateu sobre a região. Ele foi discípulo de Sócrates e depois saiu em viagem pelo mundo buscando aprender o conhecimento existente. De volta à Atenas fundou a Academia, uma instituição devotada à investigação científica e filosófica. As grandes contribuições à matemática feitas na Academia, no séc. IV a.C., são atribuídas a outros membros da escola que é considerada, por isto, o elo de ligação entre os pitagóricos e a escola mais moderna de Alexandria. A importância de Platão, neste caso, se deve à sua defesa enfática de que a matemática é o treinamento mais refinado para o espírito, uma condição necessária para o estabelecimento da verdadeira filosofia e para a formação dos líderes e governantes. Que aqui não entre quem não sabe geometria, era o lema afixado à entrada da Academia.

Diversos alunos da escola platônica se dedicaram à matemática e a difundiram pelo mundo grego, fundando novas escolas no continente ao nas colônias. Eudoxo fundou uma escola na Ásia Menor e teve como discípulo Menaecmo, o descobridor das seções cônicas. A Teeteto se atribui grande parte do conteúdo mais tarde exposto nos Elementos, de Euclides. Outro aluno de Platão com importantes contribuições para a filosofia e a ciência foi Aristóteles. Embora não fosse propriamente um matemático ele sistematizou o sistema de lógica dedutiva e deixou vários textos sobre física e outras áreas diversas da filosofia.

Durante primeiro período de 300 anos da matemática grega, contando a partir de Tales de Mileto, três linhas de desenvolvimento se destacaram: a geometria iniciada pelos pitagóricos e que culminou nos trabalho de Euclides, a geometria superior, voltada para o tratamento de curvas além da reta e da circunferência e o tratamento dos processos infinitesimais, das quantidades infinitas e das somas infinitas. Os paradoxos de Zenão e os métodos de exaustão de Antífon e Eudoxo são representantes deste último tópico. Grande parte da evolução destes conceitos surgiu da tentativa de se resolver os três grandes problemas, fazendo uso apenas de régua e compasso:

  1. A duplicação do volume do cubo. Conta-se que durante a peste uma consulta foi feita ao oráculo de Delfos sobre o que deveria se fazer para sanear as cidades. O oráculo teria respondido que seria necessário duplicar o volume do altar dedicado a Apolo. Duplicando-se uma das arestas, o que foi tentado sem sucesso, o volume seria multiplicado por 23.
  2. A triseccção do ângulo. O problema consistia em dividir um ângulo arbitrário em três partes iguais.
  3. A quadratura do círculo. Como construir um quadrado com área igual à área do círculo dado e equivale a se encontrar a área do círculo.

Nenhum dos três problemas, como se mostrou no século XIX, pode ser resolvido através do uso de régua e compasso exclusivamente. Cabe, no entanto, notar que os instrumentos régua e compasso mencionados não são como os instrumentos modernos. A régua permite traçar retas de comprimento qualquer ligando dois pontos, mas não tem escala ou graduação. O compasso não pode ser usado para transferir comprimentos, mas apenas construir círculos de raio qualquer a partir de qualquer centro. Com réguas graduadas ou com transferências de comprimentos (o que permitiria a construção de uma escala) seria possível, por exemplo, trisseccionar o ângulo. A busca de solução para os três problemas levou ao desenvolvimento de teorias tais como as das seções cônicas, curvas cúbicas e quárticas e diversas curvas transcendentes. A teoria das equações, dos números algébricos e a teoria de grupos são evoluções posteriores destas linhas de investigação.

Alexandria

Em torno do ano de 350 a.C. o centro cultural da Grécia se transferiu de Atenas para Alexandria, uma cidade no Egito construída por Alexandre o Grande. Em Alexandria foram construídas escolas importantes e bibliotecas que abrigavam pensadores de diferentes origens e correntes de pensamento convivendo sob um regime de liberdade e ecletismo cultural. Ali viveram grandes matemáticos, como Euclides, que escreveu os Elementos em torno de 300 a.C.. Este livro continha uma grande compilação do conhecimento acumulado na matemática nos períodos anteriores, contendo tratados sobre geometria e teoria dos números. A cidade permaneceu como centro cultural grego até o ataque dos muçulmanos em 700 d.C..

Após um período de notáveis descobertas em geometria e aritmética – em que se destacaram matemáticos como Hipócrates, Heron de Alexandria e Diofanto de Alexandria – Euclides, por volta de 300 a.C., realizou um exaustivo trabalho de compilação e interpretação das doutrinas matemáticas gregas nos Elementos, que permaneceu como texto influente até a modernidade européia. Foi na Grécia que a geometria se tornou uma ciência abstrata, com a feição dedutiva que hoje a caracteriza, e que surgiu pela primeira vez a preocupação de estabelecer relações entre as diferentes partes de uma figura como, por exemplo, os lados e ângulos de um triângulo.

Euclides

Euclides viveu em Alexandria por volta de 300 a.C., em pleno florescimento da cultura helenística, quando essa cidade era o centro do saber da época. Além da matemática, ele escreveu sobre ótica, astronomia e música. Entre os poucos dados de que se dispõe sobre sua vida sabe-se que ensinou matemática e fundou uma escola em Alexandria durante o reinado de Ptolomeu I. A essência de seu legado escrito, contudo, foi de tal magnitude que ele foi considerado o mais importante matemático da antiguidade. Depois da queda do Império Romano os livros de Euclides foram recuperados para a sociedade européia pelos estudiosos árabes da península ibérica. A primeira tradução direta do grego de que se tem notícia data de 1505. A partir de então, as edições da obra de Euclides se sucederam sem interrupção e os Elementos se tornaram um dos livros com maior número de publicações ao longo da história.

A obra era dividida em 13 livros, é um dos mais notáveis compêndios matemáticos de todos os tempos. Reúne o trabalho de seus predecessores, como Hipócrates e Eudóxio, sistematiza todo o conhecimento geométrico dos antigos e intercala os teoremas já conhecidos com a demonstração de muitos outros, que completam lacunas e dão coerência e encadeamento lógico ao sistema por ele criado. Os 13 livros que compõem Os Elementos contêm uma compilação da maior parte do conhecimento acumulado pelos gregos até aquele momento, incluindo a geometria elementar, geometria de polígonos e do círculo, a teoria dos números, a teoria dos incomensuráveis e medidas de áreas e volumes. A argumentação de Euclides foi tomada como um modelo de rigor lógico exibido nos tempos antigos, enquanto a estrutura de sua apresentação, feita sob a forma de definições, axiomas, postulados e teoremas é praticamente a mesma usada na matemática nos dias de hoje. Nos livros está ilustrada a prática grega de estabelecer provas matemáticas através da definição clara dos pressupostos iniciais e da argumentação lógica para se obter as conclusões desejadas.

Um traço característico do procedimento de Euclides é a formulação das proposições geométricas de forma universal e absoluta, acompanhadas das respectivas demonstrações, que nunca se revestem de caráter experimental. São sempre dedutivas, ou seja, se apóiam em premissas, e procuram chegar a conclusões necessárias do ponto de vista lógico. Euclides chamou de postulados as leis geométricas tomadas como premissas básicas e admitidas sem demonstração. Teoremas ou proposições são as leis demonstradas a partir dos postulados. Para construir seu sistema, Euclides recorreu ainda a princípios básicos que chamou axiomas, os quais diferem dos postulados pelo caráter mais geral que revestem.

Os cinco postulados de Euclides representam a base da geometria Euclidiana, mantida inalterada por muitos séculos. São eles:

  1. Uma reta pode ser traçada ligando dois pontos quaisquer.
  2. Qualquer segmento de reta pode ser prolongado indefinidamente.
  3. Um círculo de qualquer diâmetro pode ser desenhado com centro em qualquer ponto.
  4. Todos os ângulos retos são iguais entre si.
  5. Se uma reta intercepta duas retas formando ângulos interiores de um mesmo lado menores que dois retos, prolongando-se estas duas retas indefinidamente elas se encontrarão no lado em que os ângulos são menores que dois retos.

Mais tarde de mostrou que o quinto postulado é equivalente às afirmações: (a) a partir de um ponto fora de uma reta é possível construir uma única reta paralela à reta inicial; (b) a soma dos ângulos internos de um triângulo é de 180o.

Também foi mostrado que este último postulado é independente dos demais e que outras geometrias podem ser construídas através de seu relaxamento. Além disto, do ponto de vista do matemático moderno, é considerada impossível a tarefa a que Euclides se propôs, isto é, a de definir todos os termos de um sistema de forma autoconsistente. Entende-se que tal propósito conduziria a um círculo vicioso ou a uma regressão infinita. Assim, a elaboração de um sistema como o euclidiano envolveria duas decisões fundamentais: a primeira diz respeito aos termos primitivos, que devem possibilitar a definição de todos ou da maior parte dos demais, e a segunda se refere a quais são os axiomas ou postulados a serem escolhidos.

Foi Euclides, no entanto, quem estabeleceu as fundações que permaneceram inalteradas por mais de 24 séculos, seja por mérito de uma compilação bem organizada ou por desenvolvimento próprio. Tem sido amplamente aceito que Euclides foi um grande professor e compilador das idéias que apresentou, não sendo em geral o descobridor das teorias expostas. O espaço geométrico euclidiano, imutável e simétrico, perdurou como um paradigma fundamental da ciência moderna quase até o presente. Somente nos tempos modernos puderam ser construídos e compreendidos modelos de geometrias não-euclidianas.

Eratóstenes (c.276-c.194 a.C.)

O geógrafo e matemático grego Eratóstenes, um estudioso de ampla cultura, foi o primeiro a determinar o comprimento da circunferência terrestre e tratou, com maior ou menor profundidade, todas as ciências de seu tempo.

Eratóstenes nasceu em Cirene, na Grécia, por volta do ano 276 a.C., e estudou na cidade natal, em Alexandria e Atenas. De sua extensa produção intelectual sobressaem a medição do meridiano terrestre e o método prático de determinação dos números primos, conhecido como crivo de Eratóstenes. Para medir o meridiano terrestre, Eratóstenes baseou-se na observação da posição do Sol em Alexandria e Siena (hoje Assuã), situadas sobre o mesmo meridiano mas em latitudes diferentes. Sabendo que a distância entre as duas cidades era de cinco mil estádios egípcios, relacionou essa medida com as posições ocupadas pelo Sol, num mesmo instante, em cada uma delas e concluiu que equivalia a 1/50 do meridiano terrestre. Considerando os meios rudimentares de que dispunha, o erro foi muito pequeno.

O crivo de Eratóstenes, reproduzido em quase todos os tratados de matemática conhecidos desde a antiguidade, é o método que permite construir uma tabela de números primos tão extensa quanto se queira. Consiste em escrever a sucessão dos números inteiros a partir de 2 e depois eliminar, sucessivamente, os múltiplos de 2, 3, 5 etc. Eratóstenes morreu em Alexandria, por volta de 194 a.C.

Arquimedes

Arquimedes nasceu em Siracusa, na Sicília, em 287 a.C., no século posterior a Euclides, tendo sido contemporâneo de Apolônio de Perga. Estudos históricos indicam que ele estudou na juventude com os discípulos de Euclides, em Alexandria, uma vez que mostra conhecer os desenvolvimentos matemáticos ali ensinados além de conhecer pessoalmente os matemáticos que lá trabalhavam, trocando com eles correspondência técnica e pessoal. No prefácio de seu livro Sobre as Espirais ele relata que tinha o hábito de enviar para os amigos de Alexandria os seus últimos teoremas, sem enviar as respectivas demonstrações. Alguns destes matemáticos teriam alegado serem deles estes teoremas. Arquimedes conta que, em uma última ocasião, teria enviado dois resultados falsos entre outros “de forma que aqueles que alegam terem descoberto todas as coisas sem produzir as provas podem ser desmascarados pela pretensão de descobrir o impossível.”

As inúmeras referências feitas a Arquimedes em sua época não se devem a uma renovação do interesse na matemática, e sim porque ele inventou muitas máquinas, algumas delas usadas na guerra. Estas máquinas foram muito eficazes na defesa de Siracusa quando do ataque romano, em 212 a.C.. Um exemplo de máquina que ele inventou é o parafuso de Arquimedes, um tipo de bomba d’água ainda em uso em algumas partes do mundo. Outras de suas idéias consistem no uso das roldanas duplas e das alavancas. Segundo Plutarco, Arquimedes se gabava de que “dada uma força ele poderia mover um objeto de qualquer peso, e mesmo, se houvesse outra Terra, ele a poderia remover pelo mesmo procedimento”. O rei Heron, amigo e parente de Arquimedes, pediu para ver uma demonstração prática, o que ele fez movendo grandes pesos com máquinas pequenas.

Arquimedes, apesar do renome adquirido por meio de suas invenções mecânicas, acreditava que a matemática pura era o único objeto válido de pesquisa. Nas palavras de Plutarco ele utilizava métodos práticos para descobrir resultados geométricos, “colocando sua afeição e ambição na especulação mais pura onde não há lugar para as necessidades vulgares da vida”.

As conquistas de Arquimedes foram consideradas extraordinárias e muitos historiadores o tinham como o maior matemático de seu tempo. Ele aperfeiçoou um método de cálculo de áreas de superfícies e de volumes denominado método da exaustão, um aprimoramento das técnicas desenvolvidas antes por Eudoxo e Menaechmo, e precursor das técnicas de integração desenvolvidas mais tarde por Kepler, Cavalieri, Fermat, Newton e Leibniz. Para calcular áreas de figuras de formas arbitrárias eles usou o método de as dividir em fatias estreitas, para então calcular a área de cada fatia usando a técnica desenvolvida por Eudoxo e Menaechmo.

Muitos foram os temas da matemática e suas aplicações abordados por Arquimedes, e diversos de seus livros foram preservados, entre eles:

  1. Sobre a esfera e o cilindro, onde Arquimedes mostra que a área da superfície da esfera é 4 vezes a área de um disco de mesmo raio, calcula a área da superficie de qualquer calota esférica, mostra que o volume da esfera é \(\frac{2}{3}\) do volume de um cilindro circunscrito na esfera, incluindo suas bases. Ele também mostra como cortar uma esfera por um plano de forma que os volumes de cada parte satisfaçam uma razão dada.
  2. Sobre conóides e esferóides, um estudo sobre os volumes dos sólidos hoje chamados de elipsóides, parabolóides e hiperbolóides de revolução, e segmentos destas figuras.
  3. Sobre as espirais, onde Arquimedes define a espiral (hoje denominada espiral de Arquimedes) através da propriedade que relaciona a distância da curva até a origem e o ângulo de revolução, e calcula áreas de segmentos desta espiral ligados por secantes.
  4. Sobre a medida do círculo, contendo três proposições voltadas para a solução do problema clássico da quadratura do círculo. Arquimedes mostra que o valor exato de πestá situado entre 310/71 e 31/7, resultado que ele obteve calculando a área de polígonos de 96 lados, inscritos e circunscritos na circunferência.
  5. Quadratura da parábola, onde aparece o primeiro exemplo de quadratura de uma parábola, ou seja, da determinação de um quadrado com área igual à de uma figura plana limitada por uma parábola e uma secante ligando dois de seus pontos.
  6. O Arenário, onde se propõe um sistema de numeração que permite o cálculo de grandes quantidades, até \(8 ×10^63\) na notação moderna. Ele argumenta que este número é suficiente para contar o número de grãos de areia que poderiam estar contidos no universo. Este tratado tem importância histórica pois descreve o sistema heliocêntrico devido a Aristarco de Samos, usando este sistema para calcular o raio do universo.
  7. Do equilíbrio dos planos, um tratado sobre a aplicação dos princípios geométricos aos problemas da mecânica. Nele se encontra o centro de gravidade do paralelograma, do trapézio, do triângulo e da figura limitada por segmentos de parábolas e suas secantes.
  8. Sobre corpos flutuantes, uma obra contendo os fundamentos da hidrostática, onde se encontra a exposição do Princípio de Arquimedes. Ele também estuda a estabilidade de corpos flutuantes de formas e centros de gravidade diversos.
  9. Sobre o método, relativo aos teoremas mecânicos. Neste texto aparece um tratamento do método da exaustão que o aproxima muito da tratamento moderno das técnicas modernas de integração.

Também existem referências a obras que foram perdidas. Papus faz referência a uma obra sobre poliedros semi-regulares e outro sobre o equilíbrio e alavancas. O próprio Arquimedes se refere a uma trabalho seu voltado para o estudo dos sistema numérico proposto em O Arenário. Teon menciona um tratado sobre espelhos.

Arquimedes foi morto em 212 a.C. por um soldado durante a captura de Siracusa pelos romanos, na Segunda Guerra Púnica, apesar da recomendação dos oficiais para que o sábio fosse preservado. Segundo uma versão ele estaria absorto em problemas de geometria e não teria sequer percebido a situação de perigo, se recusando a seguir o soldado e tendo sido morto por isto. Arquimedes considerava como sua realização mais importante o cálculo das áreas e volumes da esfera e de um cilindro circunscrito. Por isto pediu que uma representação da esfera e do cilindro fosse estampada na lápide, em seu túmulo. O historiador Cícero descreve que foi capaz de identificar o túmulo na Sicília, em 75 d.C., devido a esta inscrição.

Heron de Alexandria

Heron viveu em Alexandria, provavelmente no primeiro século da era cristã, tendo feito contribuições para a geometria e mecânica. Ele é especialmente conhecido pela fórmula que leva seu nome e se aplica ao cálculo da área do triângulo: se os lados de um triângulo são \(a\), \(b\) e \(c\) então a área do triângulo é \(A\) satisfazendo
$$A^2 = s(s−a)(s−b)(s−c).$$
onde definimos \(s = (a+b+c)/2\).

Seu texto mais importante sobre a geometria, Metrica, somente foi redescoberto em 1896 e traz fórmulas para o cálculo de áreas de figuras geométricas regulares de 3 a 12 lados, círculos e seus segmentos, elipses e segmentos parabólicos, além das superfícies de cilindros, cones, esferas e calotas esféricas. Ele também apresenta um método para o cálculo aproximado de raízes quadradas e cúbicas de um número.

Heron fez contribuições importantes no campo da astronomia, que ele descreve em sua obra Dioptra, onde descreve o funcionamento de um teodolito, um instrumento usado para a medida de ângulos. No mesmo texto Heron fornece um método de cálculo da distância entre Alexandria e Roma usando a diferença da hora local no momento em que um eclipse é observado nas duas cidades. Sobre a óptica Heron explicou os fundamentos da propagação retilínea da luz e a lei da reflexão. Ele acreditava que a visão era o resultado de uma emissão de raios de luz pelos olhos e que a luz viajava com velocidade infinita. Em seus trabalhos sobre a mecânica ele descreve os princípios de funcionamento de sua máquina a vapor e sugere métodos de construção de máquinas de guerra e Mecânica.

Em outro livro Heron indica como construir bonecos animados, jarras que derramam água e vinho separadamente ou em proporção constante, pássaros cantores e animais que bebem água. Alguns estudiosos acreditam que ele usava estes artifícios para ensinar física para seus estudantes, tentando mostrar que teorias científicas são relevantes na vida cotodiana. Ele também descreve sua máquina a vapor, o aeolopito, uma esfera que podia ser aquecida e que rodava espelindo vapor. O aeolopito é a primeira máquina que se conhece capaz de transformar o calor em movimento.

Diofanto de Alexandria (200 – 284 d.C.)

Diofanto viveu em Alexandria no século III da era cristã e muito pouco se sabe sobre sua vida. Verdadeiro precursor da moderna teoria dos números e das técnicas da álgebra, Diofanto foi o primeiro a usar símbolos na resolução dos problemas algébricos.

Para lidar com a deficiência na notação de sua época Diofanto introduziu o uso de notação abreviada para representar quantidades desconhecidas e suas potências. No entanto só uma incógnita era assim representada. No caso da existência de outras incógnitas elas eram mencionadas por extenso como “segunda, terceira incógnita”, etc. Para indicar a soma de dois ou mais termos ele adotava o processo de escrevê-los em sucessão, sem qualquer sinal interposto; a subtração era indicada por uma abreviatura da palavra leípsis, que em grego significa “termo negativo” ou “menos”.

Diofanto expôs uma série de soluções que despertaram interesse entre os árabes. Uma delas passou à história da matemática graças a Pierre de Fermat, no século XVII. É o problema expresso pela equação \(x^n + y^n = z^n\). Diofanto demonstrou que para [/latex]n = 2[/latex] existem infinitas soluções. Fermat, ao retomar o problema, estabeleceu o famoso último teorema de Fermat, segundo o qual a equação não tem solução em números inteiros quando n é maior que 2.

Em seu trabalho Diafanto trata da solução de equações lineares e quadráticas, considerando apenas as soluções positivas e racionais, considerando inúteis as equações que levavam a soluções negativas ou irracionais. A equação \(4x + 20 = 4\), por exemplo, é considerada absurda porque leva a “resposta sem significado”. Além disto não há evidência de que conhecesse a existência de duas soluções para uma equação quadrática. Diofanto estudou equações quadráticas divididas em três tipos: \(ax^2 + bx = c\), \(ax^2 = bx+c\) e \(ax^2 + c = bx\). O motivo para esta separação, que hoje consideraríamos desnecessária, está na ausência de um sinal para representar o zero e para evitar os coeficientes negativos.

Diofanto resolveu problemas tais como pares de quadráticas simultâneas e outros sistemas. Considere, por exemplo, o sistema
$$y + z = 10, \qquad yz = 9.$$
Ele resolveria este problema criando uma única quadrática, criando uma nova variável \(x\) e fazendo \(2x = y−z\). Primeiro somando \(y + z = 10\) e \(y−z = 2x\), e depois subtraindo temos, respectivamente \(y=5+x\) e \(z=5−x\). Portanto
$$9 = yz = (5+x)(5−x) = 25 − x^2 \to x^2 = 16; x=4,$$
o que nos leva à solução \(y = 9\) e \(z = 1\).

Aparentemente Diofanto conhecia o fato de que qualquer número pode ser escrito como a soma de quatro quadrados, um fato extraordinário uma vez que Fermat tentou, sem sucesso, provar este resultado, algo só realizado por Lagrange muito mais tarde.

Dos 13 livros de sua famosa Aritmética, sete desapareceram. Também se atribui a Diafanto os livros Números poligonais, Porismos e Moriástica (um trabalho sobre frações). Segundo a tradição, em seu túmulo estava gravado um enigma matemático cuja solução revelava que ele viveu 84 anos:

“… sua infância durou 1/6 de sua vida; se casou 1/7 da vida, depois; sua barba cresceu depois de transcorridos 1/12 mais e seu filho nasceu 5 anos mais tarde; o filho alcançou apenas a metade da vida do pai, que morreu 4 anos depois de seu filho”.

Matemática aplicada na Grécia

No período inicial o sistema de numeração grego não trouxe grandes aperfeiçoamentos em relação ao egípcio e, em particular, ao babilônico. Os gregos não utilizavam a notação posicional já conhecida na mesopotâmia. Apesar disto, devido à vasta influência grega na cultura ocidental posterior, vários prefixos de numeração, tais como penta (representando cinco), deca (dez), hecaton (cem) e quilo (mil) se conservam até os dias de hoje.

Juntamente com os avanços na matemática pura muitos progressos foram feitos sobre suas aplicações, particularmente aos tópicos da ótica, mecânica e astronomia. A maioria dos autores e grandes matemáticos também se dedicou à algum tópico de suas aplicações. Por exemplo, Euclides e Arquimedes escreveram sobre astronomia. Logo após o tempo de Apolônio os astrônomos gregos adaptaram o sistema de numeração fracionária dos babilônios e criaram tabelas de arcos de circunferências. Dado um círculo de raio fixo estas tabelas listavam os valores do comprimento de arco para incrementos do ângulo subentendido, representando assim o equivalente antigo das modernas tabelas trigonométricas. Nas tabelas mais antigas, tal como a de Hiparco, em torno de 150 a.C., os ângulos eram listados em incrementos de 71, variando de 0 até 180. Até o século II a.C. a técnica numérica grega havia avançado ao ponto de permitir que Ptolomeu, em seu Almagesto, apresentasse tabelas de arcos de círculos para ângulos com incrementos de 3, com precisão de cinco casas decimais e apresentados em numeração sexagesimal.

Na mesma época o astrônomo Menelau de Alexandria desenvolveu um método para a solução de problemas involvendo triângulos planos apresentou algumas soluções associadas à trigonometria esférica. Os avanções astronômicos na Grécia permaneceram insuperados até o resurgimento do interesse científico na Europa, após a Idade das Trevas, particularmente através dos trabalhos de Johannes Kepler, Copérnico e Galileu.

Bibliografia

  • Boyer, Carl; História da Matemática, Edgard Blucher, São Paulo, 1996.
  • Cornford, F. M.: Principium Sapientae, As Origens do Pensamento Filosófico Grego, Fundação Calouste Gulbenkian, Lisboa, 1952.
  • Courant, R; Robbins H.: O Que é a Matemática?, Ciência Moderna, Rio de Janeiro 2000.
  • Eves, Howard; Introdução à História da Matemática, Editora Unicamp, Campinas, 2004.
  • Maciel Jr., A.: Pré-Socráticos, A Invenção da Razão, Coleção Imortais da Ciência, Ed. Odysseus, São Paulo, 2003.
  • Singh, Simon; O Último Teorema de Fermat, Editora Record, São Paulo, 1999.
  • O Connor, J. J.; Robertson E. F. : Artigo Internet
    http://www-history.mcs.st-and.ac.uk/history/
  • Encyclopaedia Britannica do Brasil Publicações Ltda.

Desafios Lógicos e Quebra-Cabeças

O Problema de Monty Hall

Um problema de lógica razoavelmente difícil! Vejo alguém de olhos azuis!
Aprenda a programar: Python.

A televisão americana manteve por muitos anos um programa chamado Let’s make a deal! (Vamos negociar). Nele o apresentador (que era o canadense Monty Hall) apresentava três portas fechadas para um concorrente. Em uma delas havia um automóvel, nas duas outras uma cabra. O concorrente ganharia o automóvel se escolhesse a porta com o automóvel. Uma vez escolhida uma das portas Hall abria outra porta entre as restantes, onde havia uma cabra, e perguntava ao concorrente se ele queria trocar de portas. O que você deve fazer para ter maior chance de ganhar o automóvel?

Sem perda de generalidade, vamos supor que você tenha escolhido a porta nº 1. O anfitrião do programa então abre a porta nº 3, que tem uma cabra. E diz: “Você quer trocar para a porta nº 2?”

É vantajoso mudar de escolha?

Muitos estatísticos se recusaram (e ainda se recusam) a aceitar essa solução e sua explicação, embora provas formais tenham sido desenvolvidas para mostrar isso. Conta-se que até Paul Erdös, um dos matemáticos modernos mais prolíficos, se recusou a aceitá-la até ver uma simulação de computador que mostra que essa é a escolha correta.

Encontre a Jóia Falsa

Você tem em mãos 9 pedras do mesmo tamanho e mesma aparência. Todas são diamantes, exceto uma delas, constituída de material mais leve. Você tem uma balança de pratos (que apenas serve para comparar pesos).

Como encontrar a pedra falsa fazendo apenas 2 pesagens?

Mais uma na Balança

Você recebe um carregamento de 10 caixas. Em cada caixa há 10 objetos pesando 10 gramas cada, exceto por uma delas onde, por defeito na fabricação, todos os objetos pesam, cada um, 1g a mais que os das outras caixas. O único instrumento disponível é uma balança graduada onde é possível ler o peso.

Como descobrir a caixa com os objetos defeituosos fazendo uma única medida?

Os olhos azuis na Ilha

Um problema de lógica razoavelmente difícil.

Este é um problema bem definido e com solução lógica. Não é uma pegadinha nem um jogo de palavras.

200 pessoas moram em uma ilha, 100 com olhos azuis, 100 com olhos castanhos e uma guru, com olhos verdes. Ninguém na ilha sabe a cor de seus próprios olhos, não pode olhar em espelhos nem contar um ao outro qual é esta cor. Todos são excelentes lógicos – se uma conclusão pode ser deduzida logicamente eles o farão imediatamente. Todos podem ver os olhos dos demais moradores a qualquer momento e podem contar quantas pessoas têm olhos de cada cor.

Uma pessoa de olhos azuis pode ver 100 pessoas com olhos castanhos e 99 pessoas com olhos azuis (e uma com verde, a guru), mas isso não permite que ele saiba a cor de seus próprios olhos; para ele podem existir 101 pessoas de olhos castanhos e 99 de olhos azuis. Ou ele poderia até ter olhos verdes ou pretos!

Todas as noites um barco pára na ilha e qualquer morador que descobrir a cor de seus olhos deixará a ilha. Todos conhecem as regras aqui listadas.

Um dia, antes que chegue o barco, a guru anuncia para todos:

Posso ver alguém de olhos azuis.

Quem deixa a ilha, e em que noite?

O Teste de Wason

O teste de Wason foi usado para testar competência de seus sujeitos (as pessoas testadas). No estudo original, feito em 1966, apenas 10% dos testados acertavam a resposta. Quatro cartas estão dispostas em uma mesa à sua frente mostrando A, 7, D e 4.

Você recebe a informação de que cada uma delas contém uma letra em uma face, um dígito na outra. Você deve verificar a seguinte hipótese: todas as cartas que contém uma vogal contém um número par. Quais cartas devem ser viradas para verificar a hipótese?


Leia mais sobre o Viés de Confirmação e Teste de Wason.

Os três cavalos mais rápidos

Você tem 25 cavalos e precisa descobrir quais são os 3 mais rápidos entre eles. Para isso você pode fazer testes de comparação colocando 5 cavalos de cada vez para competir em uma corrida. Você verá a ordem de classificação, mas não o tempo ou velocidade de cada um.

Qual é o menor número de testes necessários para fazer a sua seleção?