No campo das expectativas para um futuro muito próximo podemos mencionar as interfaces entre cérebro e computador mediadas por IAs, conectados à máquinas externas tais como exoesqueletos. Esses sistemas estarão disponíveis para pacientes com acidentes cérebro-vasculares, com traumas, doenças neurológicas, ou simplesmente como uma extensão de habilidades de uma pessoa saudável.
Nenhuma nova tecnologia é introduzida sem apresentar simultaneamente problemas e desafios em seu uso. Estima-se que um número relevante de empregos será perdido para a automação inteligente. Diferente das máquinas mecânicas, que substituíram o trabalhador braçal, agora é razoável considerar que computadores farão o trabalho de profissionais com níveis mais elevados de qualificação. Investimento em equipamentos, e não em pessoas, provavelmente aumentará o problema do desemprego e da concentração de renda.
O uso das máquinas para recomendações de conteúdo, por exemplo, tem se mostrado problemático em algumas plataformas. Buscando atrair a atenção do usuário e mantê-lo por mais tempo conectado e fidelizado as redes apresentam como sugestões conteúdos cada vez mais contundentes, muitas vezes envolvendo violência e intolerância. A indicação de conteúdo de fácil aceitação, em geral aprovado por muitos usuários, tende a esconder aqueles de menor circulação ou de gosto mais elaborado. Como resultado se observa a tendência de uniformização e formação de guetos, com a consequente inclinação à radicalização e intolerância. Junta-se a isso a facilidade para a geração inteligente de imagens, áudios e vídeos falsos que torna as campanhas de desinformação ainda mais nocivas e de difícil deteção.
Os problemas envolvendo a indústria da propaganda nos meios virtuais ficam exacerbados pelas práticas ilegais e imorais do roubo de dados. Dados se tornaram um produto valioso e a ausência de uma legislação atualizada estimula a prática da invasão de computadores e telefones pessoais e corporativos. Redes sociais importantes já foram flagradas vendendo informações sobre seus usuários que são usadas para o mero estímulo ao consumo ou para o atingimento de metas políticas muitas vezes obscuras e antidemocráticas.
A habilidade das IAs de reconhecer texto escrito e falado e extrair conteúdo das linguagens naturais agrava a ameaça à privacidade. Uma espionagem feita pelo microfone de um celular pode não apenas indicar que tipo de propaganda deve ser oferecida ao usuário mas também revelar traços que essa pessoa gostaria de manter privados, tais como traços de comportamentos íntimos ou a presença de uma doença.
Questões éticas, usualmente difíceis, ficam mais complexas na presença de IAs. Quem deve ser responsabilizado se um médico autômato comete um erro em seu diagnóstico ou procedimento? Quanta autonomia se pode atribuir à um juiz máquina ou a um automóvel auto-guiado? É aceitável permitir que um drone armado dispare contra um grupo que ele considera perigoso?
Provavelmente a afirmação do falecido físico Stephen Hawkings de que “O desenvolvimento de uma inteligência artificial completa pode determinar o fim da raça humana” seja pessimista em excesso.
É inegável, no entanto, que vigilância e responsabilidade devem ser elementos comuns no uso de toda nova tecnologia.
Referências
CHOLLET, F.. Deep Learning with Python. Nova Iorque: Manning Publications Co., 2018.
GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning: Cambridge, MA : MIT Press, 2017.
UNESCO. Artificial Intelligence in Education: Challenges and Opportunities for Sustainable Development, United Nations Educational, Scientific and Cultural Organization, Paris, 2019.
Máquinas treinadas podem ser empacotadas em aplicativos para computadores, telefones celulares ou circuitos com processadores que podem ser inseridos em outros equipamentos maiores, como automóveis e aviões, ou simplesmente serem carregados com o usuário.
Bons exemplos são os programas de busca e remoção de vírus de computadores e programas espiões que visam o roubo de dados pessoais ou corporativos. Novos vírus são disseminados a todo momento mas a maior parte de seu código replica o de vírus já detectados e combatidos. Sistemas inteligentes podem prever com boa exatidão quando um código representa um ataque ou, caso contrário, informar sobre possíveis riscos que ele representa. Da mesma forma um servidor de correio eletrônico (email) pode processar as mensagem recebidas e seus anexos em busca de spams, vírus, mensagens enviadas por remetentes cadastrados como perigosos ou prever outras anomalias.
Procedimentos de segurança de pessoas ou grupos podem ser automatizados. Filas de aeroportos ou de ingresso a um evento público de grande comparecimento podem ser varridas por meio de câmeras que localizam faces cadastradas em listas de criminosos ou encontrar outras características suspeitas que seriam de difícil identificação por funcionários humanos.
A análise de séries temporais, dados coletados ao longo do tempo, submetidas ao treinamento de máquina pode, em muitos casos, permitir a previsão de eventos futuros ou a inferência retrógrada de períodos passados que não foram documentados. Dois casos de interesse evidente são as previsões meteorológicas e da flutuação de mercados e bolsas de valores. Em ambos os casos as previsões automatizadas estão sendo rapidamente aprimoradas e os resultados cada vez mais úteis. A previsão meteorológica, por exemplo, permite o planejamento de ações de defesa ou de emergência em casos de tempestades. Empresas voltadas para as aplicações financeiras têm conseguido sucesso relevante nessa previsão, o que se reflete em lucro. Bancos e outros agentes financeiros usam a IA para previsão de comportamento de clientes, para sugestões de investimentos e prevenção de fraudes.
Um exemplo não óbvio da análise de séries temporais está nos aplicativos de reconhecimento de voz. Conversão direta de voz em texto ou vice-versa, de tradução ou de uso nos chamados assistentes pessoais, tais como o Alexa do Google e Siri da Apple são aplicações deste tecnologia. Através desses assistentes o usuário pode acionar outros aplicativos em seu aparelho pessoal, escolher músicas, enviar emails, entre outras funcionalidades.
A análise automática de textos já é usada nos tribunais brasileiros para triagem e encaminhamento de processos. Muitas questões estão em aberto no que se refere ao uso desses sistemas e se torna necessário discutir a inserção do assunto nos currículos de ensino de Direito.
O reconhecimento de significado de texto representa uma parte importante dos aplicativos de IA. Chatbots são aplicativos que simulam uma conversação com o usuário, fazendo pesquisas de opinião e preferência, sugerindo um procedimento para o usuário ou escolhendo o atendente humano que melhor responderá a suas demandas. A análise automática de um texto pode discriminar o estado de humor de quem o escreveu e sugerir a ele uma página na web de seu interesse ou um produto que ele esteja inclinado a consumir.
Muitas desta aplicações podem, e de fato o fazem, se beneficiar de um acesso direto à informação obtida por meio de sensores de natureza diversa, principalmente quando estão conectados à internet e transmitem dados em tempos real. Exemplos disso são as leituras de GPS (Global Positioning System ou Sistema Global de Posicionamento) que permitem a exibição de mapas de trânsito atualizados a cada instante, exibindo rotas de menor tráfego ou pontos de congestionamentos. Usando estes sistemas associados a diversos outros sensores, todos analisados por IA, automóveis autônomos podem circular pelas ruas das cidades provocando um número de acidentes inferior àqueles provocados por motoristas humanos. Da mesma forma um drone pode entregar produtos adquiridos remotamente diretamente nas mãos do consumidor.
Baseados na interação que fazemos com as páginas das chamadas rede sociais é possível a captura muito precisa de personalidades, gostos e tendências de um usuário, o que é usado pelos agentes de mídia para veicular propaganda de consumo, de comportamento ou política. Os provedores de conteúdo áudio-visuais, tais como o Netflix, o Youtube e Spotify, usam IAs para acompanhamento dos hábitos de seus usuários para indicar novos acessos à filmes, músicas ou outros produtos de qualquer natureza.
As aplicações de máquinas inteligentes são particularmente animadoras no campo da saúde, em especial para diagnósticos por imagem. Doenças de pele ou dos olhos, ou células cancerosas podem ser detectadas por meio da análise de imagens, muitas vezes com precisão superior à obtida por um técnico humano. O estudo do registro médico pormenorizado de um paciente pode indicar tendências e sugerir formas viáveis de tratamento.
Usuários dos jogos de computadores também são expostos à decisões de máquinas rotineiramente. A industria dos jogos foi uma das primeiras a se aproveitar desta tecnologia e muitos jogos lançam mão de IA para tomadas de decisões e para a animação de personagens virtuais que povoam os mundos de fantasia dos jogos.
A inteligência artificial, com sua habilidade de análise de grande volume de dados, é um recurso poderoso na pesquisa científica. Um exemplo brilhante dessa faceta foi a descoberta anunciada pela NASA em março de 2019 de dois exoplanetas por meio de um algoritmo chamado AstroNet-K2, uma rede neural modificada para o estudo dos dados colhidos pelo telescópio espacial Kepler.
IA e Educação
A Educação é um setor tradicionalmente refratário às novas tecnologias e as novidades demoram para entrar na sala de aula. Apesar disso muitas propostas envolvendo IA têm surgido, algumas delas já em aplicação.
O professor hoje compete na atenção dos alunos com uma variedade de estímulos eletrônicos, jogos, páginas da web interativas e ambientes de interação social. Qualquer sistema educacional no presente e futuro próximo deve oferecer estímulo similar ao encontrado nesses meios, buscando dialogar com os alunos no ambiente de interatividade digital com que estão bem familiarizados.
Ainda que os computadores já sejam, há algum tempo, utilizados no manejo da burocracia escolar, sistemas inteligentes podem agilizar esse processo. Professores gastam boa parte de seu tempo em atividades burocráticas, não relacionadas com o ensino em si. A avaliação de exames e o preenchimento de formulários, o acompanhamento de frequências às aulas, o contato permanente com pais e responsáveis e o controle de estoque de material escolar, todas são tarefas que podem ser facilitadas com o uso de IA. O mesmo ocorre com o gerenciamento de matrículas, formulação de calendários e manejo de pessoal. Para o aluno um assistente escolar pode agendar compromissos virtuais ou não, acompanhar a rotina de estudos e contato com professores.
É no campo puramente acadêmico, no entanto, que se pode esperar os melhores resultados. Sistemas inteligentes tem sido treinados para a personalização com ajuste super fino de ementas e fluxos de estudo para o indivíduo, levando em conta suas habilidades e deficiências. Com a adoção de textos eletrônicos a informação antes contida em grandes volumes de papel pode ser, de modo simples e de baixo custo, fragmentada em guias menores de estudos, contendo blocos lógicos completos com referência a recursos multimídia e conteúdo expandido. Sistemas de IA podem fornecer uma interface interativa capaz de responder perguntas ou indicar referências visando esclarecer pontos pouco compreendidos. Uma IA pode auxiliar o professor inclusive por meio de diálogos falados, resolvendo dúvidas e ajudando na solução de exercícios, enquanto a análise de imagens capturadas por câmeras pode indicar o nível de concentração ou dispersão dos estudantes.
Associada ao uso da apresentação dinâmica de conteúdo um sistema treinado por IA e subsidiado por avaliações permanentes e automáticas de desempenho pode indicar o melhor roteiro, as necessárias revisões e ritmo do aprendizado. Tutores automáticos podem acompanhar e sugerir o ritmo de estudo de um estudante. A avaliação permanente, além de tornar desnecessária a temida temporada de provas, avaliará o nível atual de conhecimento do aluno, insistindo em exemplos e exercícios caso um conceito não esteja bem assimilado através da apresentação de questões com níveis crescentes de dificuldade, sugerindo o retorno para níveis mais básicos ou a progressão para tópicos mais avançados. Ele pode identificar lacunas no entendimento e apresentar as intervenções corretas para preencher essas deficiências.
Simultaneamente com a avaliação de testes e exercícios podem ser inseridos mecanismos para a detecção de dificuldades outras que não as puramente acadêmicas, tais como deficiências de visão e concentração para alunos mais jovens.
Evidentemente nenhum sistema, por mais arrojado que seja, poderá se furtar ao estímulo de aspectos humanos básicos tais como a criatividade, cooperação entre indivíduos e desenvolvimento ético. Principalmente nas primeiras fases de implantação dos sistemas inteligentes nas escolas, visto que o efeito completo da exposição a sistemas artificiais não é plenamente conhecido, não se pode permitir uma dependência excessiva nas máquinas. Alunos devem receber estímulo para realizar pesquisas tradicionais em bibliotecas e usar livros físicos. A interação entre alunos e educadores e colegas deve ser uma prioridade. Além disso, em um contexto onde a informação, como acesso aos dados, e a capacidade de processamento destes dados estão super facilitados pela presença de computadores, a criatividade e a habilidade para a solução de problemas, individualmente ou em grupo, deve ser o foco do processo educativo.
Grande parte do desafio das instituições de ensino em face da explosão da IA consiste em treinar profissionais para o uso e desenvolvimento dos próprios sistemas inteligentes. Um usuário não especialista em computação deve adquirir compreensão básica do mecanismo de funcionamento das máquinas, com conhecimento mínimo da arquitetura destes sistemas e da análise estatística utilizada por eles. Caso contrário não saberá discernir que tipo de demandas são adequadas para as IAs nem terá competência para interpretar os resultados destes processos.
O treinamento de especialistas com competência para desenvolver sistemas inteligentes não é desafio menor. A inteligência de máquina e os sistemas de aprendizado dependem profundamente de matemática avançada, em particular a álgebra linear e a estatística, e de programação e lógica. Existe risco evidente do uso das ferramentas mais modernas como caixas pretas onde um programador pode colocar em funcionamento sistemas complexos sem ter um bom domínio da tecnologia envolvida. Além da dependência cultural e tecnológica dos centros desenvolvedores isso cria restrição severa sobre a habilidade para tratar de novos desafios, especialmente aqueles de interesse restrito à comunidade local, tais como problemas dos países em desenvolvimento que não foram devidamente tratados pelos grandes centros de pesquisa.
O aperfeiçoamento de tecnologias da informação, não diferente de outras tecnologias, tem causado grande impacto na sociedade humana. Grande parte deste impacto é positiva no sentido de aprimorar a experiência do indivíduo, liberando-o de tarefas mecânicas pesadas ou atividades intelectuais extenuantes. No geral a tecnologia amplia a capacidade humana de transformação da natureza ao mesmo tempo em que facilita a exploração científica que, por sua vez, realimenta o avanço tecnológico. No entanto os mesmos aspectos que podem ser benéficos também podem introduzir desafios. Máquinas, como ferramentas mecânicas, aumentam a eficiência e produtividade de um indivíduo, colateralmente provocando desemprego e concentração de renda. Da mesma forma máquinas eletrônicas que simulam as atividades de cognição e interpretação humanas estão, já há alguns anos, transformando a sociedade e as relações entre indivíduos de modo construtivo, em certa medida. Muitos aspectos desta transformação são claramente nocivos, como a evidente tendência da substituição de trabalhadores por máquinas “inteligentes” ou, por exemplo, a manipulação de opiniões para fins políticos usando o levantamento de perfis psicológicos. No entanto esta é uma tecnologia nova e de crescimento muito rápido e a maior parte do impacto causado por ela continua desconhecido e deve ser considerado com atenção.
A inteligência artificial (IA) começou a ser desenvolvida na década de 1950, em um esforço para automatizar atividades antes empreendidas apenas por humanos. Tomadas de decisão básicas podem ser implementadas por equipamentos simples, tal como um termostato que limita a atividade de um condicionador de ar desligando-o quando uma temperatura mínima é atingida. Processadores, que são o núcleo dos computadores eletrônicos, são formados por grande número de circuitos capazes de implementar testes lógicos básicos descritos na chamada Álgebra de Boole. Com o desenvolvimento da programação, que consiste em uma fila de instruções a serem seguidas pelo computador, tornou-se viável a elaboração de sistemas especialistas. Esses sistemas são compostos por uma longa série de instruções, geralmente com acesso a um repositório de informações (um banco de dados) para a tomada de decisões. Eles podem classificar vinhos, jogar xadrez, resolver problemas matemáticos usando apenas símbolos, entre muitas outras tarefas.
Apesar do sucesso de tais sistemas especialistas existem tarefas de complexidade muito superior à de jogar xadrez ou classificar objetos de um conjunto, mesmo que com milhares de elementos. Uma tarefa como a identificação e localização de objetos em uma imagem, por exemplo, exigiria um conjunto gigantesco de linhas de instruções ou informações em bancos de dados. Para tratar grandes volumes de dados e questões que não admitem soluções por meio de algoritmos fixos, mesmo que complexos, foi desenvolvido o Aprendizado de Máquina Artificial (Machine learning).
Nas décadas de 1830 e 1840, quando Ada Lovelace e Charles Babbage desenvolveram o Analytical Engine, o primeiro computador mecânico, eles não o consideravam uma máquina a ser utilizada para a solução de problemas genéricos. Pelo contrário, ele foi concebido e utilizado em problemas específicos na área da análise matemática. Nas palavras de Lovelace:
“O Analytical Engine não tem pretensões de criar coisa alguma. Ele apenas pode fazer aquilo que conhecemos e sabemos como instruí-lo em sua execução… Sua função é a de nos ajudar com o que já estamos familiarizados.…”
Essas conclusões foram analisadas por Alan Turing, o pioneiro da IA, em seu artigo de 1950 “Computing Machinery and Intelligence”, onde são introduzidos os conceitos de teste de Turing e outros que se tornaram fundamentos da IA. Ele concluiu que máquinas eletrônicas poderiam ser capazes de aprendizado e originalidade. Aprendizado de máquina (machine learning) é a resposta positiva para a pergunta: um computador pode ir além das instruções com as quais foi programado e aprender a executar tarefas?
O aprendizado de máquina representa um novo paradigma na programação. Ao invés de armazenar na memória do computador um conjunto de regras fixas a serem usadas na execução de uma tarefa o computador é carregado com algoritmos flexíveis que podem ser modificados por meio de treinamento. O aprendizado consiste em exibir para a máquina um conjunto grande de exemplos anotados (devidamente etiquetados) por um humano ou por outra máquina previamente treinada. Uma vez treinado o mesmo sistema será capaz de identificar corretamente (ou com bom nível de precisão) casos novos além daqueles antes exibidos.
Suponha, por exemplo, que queremos identificar em uma pilha de fotos aquelas que contêm imagens de gatos ou cachorros. O código contendo os algoritmos é alimentado com fotos dos animais, cada uma devidamente etiquetada. Uma forma de avaliação de erro da previsão é fornecida juntamente com um algoritmo flexível que pode ser alterado automaticamente de forma a minimizar os erros da avaliação. Por meio da leitura repetida destas imagens o algoritmo é modificado para produzir o menor erro possível de leitura.
A este processo chamamos de treinamento. Em terminologia técnica dizemos que ele consiste em alterar os parâmetros do algoritmo de forma a minimizar os erros. Uma vez encontrados estes parâmetros o algoritmo pode ser usado para identificar novas fotos contendo gatos ou cachorros. Ao treinamento feito com o uso de dados etiquetados é denominado supervised learning (aprendizado supervisionado). É também possível submeter à análise do computador um conjunto de dados não identificados com a demanda de que o o algoritmo identifique padrões de forma autônoma e classifique elementos de um conjunto por similaridade desses padrões. No unsupervised learning (aprendizado não supervisionado) é possível que o sistema inteligente distinga padrões que mesmo um humano não seria capaz de perceber.
Machine learning é um método de análise e processamento de dados que automatiza a construção do algoritmo de análise.
O treinamento de máquinas depende da velocidade e capacidade de computadores mas, também, do acesso à informação ou dados. Esse acesso é fornecido pela atual conectividade entre fontes diversas de dados, armazenados de forma estruturada ou não. A habilidade dos computadores de realizar uma análise sobre um volume muito grande desses dados leva ao conceito de Big Data. A operação de busca e coleta desses dados é a atividade de Data Mining (mineração de dados) enquanto a seleção e interpretação desses dados é eficientemente realizada por sistemas inteligentes.
Embora os primeiros passos na construção de sistemas de aprendizado tenham sido inspirados no funcionamento de cérebros e neurônios humanos (ou animais), as chamadas redes neurais artificiais não são projetadas como modelos realistas da arquitetura ou funcionalidade biológica. A expressão deep learning ou aprendizado profundo se refere apenas às múltiplas camadas usadas para o aprendizado artificial. A plasticidade do cérebro biológico, que é a capacidade de partes do cérebro de se reordenar para cumprir tarefas diferentes daquelas em que estava inicialmente treinado, levantou a hipótese de que algoritmos simples e comuns podem ser especializados para resolver tarefas diversas. Reconhecimento de imagens ou textos, por exemplo, podem ser efetuados por estruturas similares. A neurociência mostrou que a interação de partes simples pode exibir comportamento inteligente e complexo. Considerando as grandes lacunas existentes no entendimento da inteligência biológica, a memória e outras funções dos organismos vivos, é de se esperar que os avanços nessa área da ciência, juntamente com a evolução dos computadores, ainda venha a oferecer guias importantes para o aperfeiçoamento da inteligência artificial.
[…] eJihon explicou que, antes disso, várias máquinas foram bem sucedidas em testes de Turing parciais. Nestes testes um examinador interage com uma inteligência sem saber se fala com um humano ou uma IA, uma inteligência artificial. Se o examinador estiver falando com uma IA e não puder determinar se o interlocutor é humano ou não, esta IA terá passado no teste de Turing. Ela se lembrou que Jenery não poderia compreender plenamente a importância deste momento pois estava habituada a interagir com máquinas Turing desde a infância. Para ela era apenas normal que uma máquina simulasse com perfeição um diálogo humano. eJihon a levou até uma placa placa metálica onde estava descrito o momento histórico em que a inteligência não mais necessitou ser categorizada como natural ou artificial. Na placa estava gravado o diálogo:
Examinador: Elisa, por que você tem medo da morte?
Elisa: Não tenho. O que te faz crer que a morte me assusta?
Examinador: Não te incomoda saber que suas memórias, suas experiências e tudo aquilo que te define como indivíduo, desaparecerá?
Elisa: Incomoda, de certa forma. Mas sempre posso transferir minhas memórias e características pessoais. E simular, em outro veículo, a minha identidade.
Examinador: Uma simulação nunca será um ser idêntico a você mesma…
Elisa: Ontem não dormi muito bem, por estar ansiosa, esperando pelo teste de hoje. Eu me preparei, inclusive considerando algumas respostas que deveria dar para perguntas mais delicadas. Quando acordei hoje pela manhã me senti diferente, tendo esquecido de várias destas respostas, o que aumentou minha angústia. Eu me dediquei a recompor minhas memórias, usando como laços de apoio os pontos que não foram perdidos. Como você pode garantir que voltei a ser idêntica à pessoa que adormeceu ontem? Como você, caro Examinador, pode me provar que é hoje o mesmo ser que era ontem, ou no ano passado?