6. Revisão de Tópicos Úteis

Logaritmo e Exponencial

As funções exponencial e logaritmo são utilizadas com freqüência na solução de equações diferenciais. Elas podem ser definidas de várias formas. Por exemplo, o logaritmo neperiano (de base e) é a área sob o gráfico da função \(1/x,\) de \(x=1\) até \(x\), ou seja

Logaritmo natural

$$
\ln x=\int_{1}^{x}\frac{dt}{t}.
$$Observamos desta definição que \(\ln1=0,\) que o logaritmo é uma função estritamente crescente e não está definida em \(x=0.\) A função exponencial, \(\exp(x)=\text{e}^{x},\) é a inversa do logaritmo,
$$
\ln x=y\Rightarrow\text{e}^{y}=x.
$$
Podemos usar as propriedades da exponencial para nos lembrar de algumas propriedades do logaritmo: observando que as seguintes igualdades são equivalentes
$$
y=\ln x^{n}\Longleftrightarrow\text{e}^{y}=x^{n},
$$
tomamos a raiz enésima dos dois lados
$$
x=\text{e}^{y/n}\Rightarrow\frac{y}{n}=\ln x
$$
o que resulta em
$$
y=n\ln x.
$$
Portanto
$$
\ln x^{n}=n\ln x.
$$
Além disto, se
$$
\ln x+\ln y=z
$$
então
$$
\text{e}^{z}=\text{e}^{\ln x+\ln y}=\text{e}^{\ln x}\text{e}^{\ln y}=xy\Rightarrow z=\ln\left(xy\right)
$$
e, portanto
$$
\ln\left(xy\right)=\ln x+\ln y.
$$
Observe que
$$
\ln x-\ln y=\ln x+\ln y^{-1}=\ln\left(\frac{x}{y}\right).
$$
A partir da exponencial definimos as funções seno hiperbólico e cosseno hiperbólico da seguinte forma
$$
\begin{array}{lll}
\text{senh }x=\frac{1}{2}(\text{e}^{x}-\text{e}^{-x}),
\ \;\; \cosh x=\frac{1}{2}\left(\text{e}^{x}+\text{e}^{-x}\right),
\ \;\; \tanh x=\frac{\text{ senh }x}{\cosh x}.
\end{array}
$$
Observe que \(\text{ senh }x\) é uma função impar enquanto \(\cosh x\) é par. Mostre, como exercício, as seguintes relações:
$$
\frac{d}{dx}\text{ senh }x=\cosh x,\ \ \ \frac{d}{dx}\cosh x=\text{ senh }x,\ \ \ \cosh^{2}x-\text{senh}^{2}x=1.
$$

A fórmula de Euler, que usaremos com freqüência ao longo do texto, pode ser justificada da seguinte maneira: partimos da expansão de Taylor para as funções exponencial, seno e cosseno, válidas para todo \(x\in \mathbb{R}\),
$$
\begin{array}{l}
\text{e}^{x}= \sum_{n=0}^{\infty}\frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots,
\\
\cos x= \sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}x^{2n}}{\left(2n\right)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots,
\\
\text{ sen }x= \sum_{n=0}^{\infty}\frac{\left(-1\right)^{n}x^{2n+1}}{\left(2n+1\right)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots.
\end{array}
$$
Em seguida fazemos \(x=i\theta\) na expansão da exponencial, para obter

$$
\text{e}^{i\theta}= 1+i\theta+\frac{\left(i\theta\right)^{2}}{2!}+\frac{\left(i\theta\right)^{3}}{3!}+\frac{\left(i\theta\right)^{4}}{4!}+\frac{\left(i\theta\right)^{5}}{5!}+\frac{\left(i\theta\right)^{6}}{6!}+\cdots
$$
$$
=1+i\theta-\frac{\theta^{2}}{2!}-\frac{i\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+\frac{i\theta^{5}}{5!}-\frac{\theta^{6}}{6!}+\cdots.
$$
onde usamos o fato de que \(i^{2}=-1,\) \(i^{3}=-i,\) etc. Agrupando os termos reais e imaginários temos
$$
\text{e}^{i\theta}=1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\frac{i\theta^{6}}{6!}+\cdots+i\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}+\cdots\right),
$$
ou seja,
$$
\text{e}^{i\theta}=\cos\theta+i\text{ sen }\theta.
$$
Desta forma podemos definir a função exponencial de um número complexo qualquer, \(z=\varphi+i\theta,\) como
$$
\text{e}^{z}=\text{e}^{\varphi+i\theta}=\text{e}^{\varphi}\text{e}^{i\theta}=\text{e}^{\varphi}\left(\cos\theta+i\text{ sen }\theta\right).
$$

Técnicas de Integração

Dizemos que \(F(x)\) é uma primitiva de \(f(x)\) se
$$
\frac{dF\left(x\right)}{dx}=f(x).
$$
A diferencial da função \(F\) é definida como
$$
dF\left(x\right)=f(x)dx.
$$
Se \(F\) é primitiva de \(f\) defimos a integral de \(f(x)\) como
$$
\int f(x)dx=F\left(x\right)+c
$$
onde \(c\) é uma constante qualquer. Esta constante, a chamada constante de integração, é essencial na solução de equações diferenciais. Observe que, se \(F\left(x\right)\) é uma primitiva, \(F\left(x\right)+c\) também é. Algumas integrais mais simples podem ser calculadas por simples inspecção, se conhecermos uma primitiva do integrando.

Por exemplo
$$
\int\cos xdx=\text{ sen }x+c, \;\;\text{ porque }\;\;\frac{d}{dx}\left(\text{ sen }x\right)=\cos x.
$$
Outros exemplos:
$$
\int\frac{dx}{x}=\ln x+c, \;\; \int\text{e}^{x}dx=\text{e}^{x}+c,\;\;\int x^{n}dx=\frac{x^{n+1}}{n+1}+c.
$$

Mudança de Variáveis:

Algumas vezes uma integral pode ser colocada sob a forma de uma integral conhecida ou tabelada através de uma troca de variáveis. Por exemplo, para calcular a integral
$$
I_{1}=\int\text{ sen }\left(2x+1\right)dx
$$
fazemos a troca
$$
u=2x+1\Rightarrow du=2dx.
$$
Resolvemos a integral em termos da variável \(u\) e, em seguida, reinserimos a variável inicial \(x,\)
$$
I_{1}=\frac{1}{2}\int\text{ sen }udu=-\frac{1}{2}\cos u+c=-\frac{1}{2}\cos\left(2x+1\right)+c.
$$
Como outro exemplo, calculamos a integral
$$
I_{2}=\int x\text{e}^{-x^{2}}dx,
$$
trocando a variável,
$$
u=-x^{2}\Rightarrow du=-2xdx,
$$
que, substuitida na integral fornece
$$
I_{2}=-\frac{1}{2}\int\text{e}^{u}du=-\frac{1}{2}\text{e}^{u}+c=-\frac{1}{2}\text{e}^{-x^{2}}+c.
$$
Outro exemplo:
$$
I_{3}=\int\frac{1}{x-1}dx.
$$
Faça \(u=x-1,\;du=dx.\) A integral é
$$
I_{3}=\int\frac{1}{u}\,du=\ln u+c=\ln\left(x-1\right)+c.
$$

Integração por partes

Se \(u(x)\) e \(v(x)\) são funções deriváveis então vale a relação
$$
\int udv=uv-\int vdu.
$$
Vamos usar esta relação para calcular a seguinte integral
$$
I_{4}=\int x\text{e}^{-2x}dx.
$$
Identificando \(u\) e \(v\) da seguinte forma,
$$
u=x\Rightarrow du=dx;\;\;dv=\text{e}^{-2x}dx\Rightarrow v=\int\text{e}^{-2x}dx=-\frac{\text{e}^{-2x}}{2},
$$
temos
$$
I_{4}=-\frac{1}{2}x\text{e}^{-2x}+\frac{1}{2}\int\text{e}^{-2x}dx=-\frac{1}{2}\left(x+\frac{1}{2}\right)\text{e}^{-2x}+c.
$$

Outro exemplo: para calcular
$$
I_{5}=\int\text{e}^{2x}\text{ sen }xdx.
$$
identificamos agora as funções
$$
u=\text{e}^{2x} \Rightarrow du=2\text{e}^{2x}dx,
$$
$$
dv=\text{ sen }xdx \Rightarrow v=-\cos x.
$$
Usando a fórmula para a integração por partes temos
$$
I_{5}=-\text{e}^{2x}\cos x+2\int\text{e}^{2x}\cos xdx,
$$
onde trataremos a integral, mais uma vez, por partes, fazendo
$$
\begin{array}{ll} u=\text{e}^{2x} \Rightarrow du=2\text{e}^{2x}dx,
dv=\cos xdx \Rightarrow v=\text{ sen }x. \end{array}
$$
Agora temos
$$
I_{5}=-\text{e}^{2x}\cos x+2\text{e}^{2x}\text{ sen }x-4\int\text{e}^{2x}\text{ sen }xdx,
$$
ou, observando que a última integral é exatamente a integral que procuramos resolver,
$$
I_{5}=-\text{e}^{2x}\cos x+2\text{e}^{2x}\text{ sen }x-4I_{5}.
$$
Isto nos permite concluir que
$$
I_{5}=\frac{1}{5}\left(2\text{ sen }x-\cos x\right)\text{e}^{2x}+c.
$$

Frações Parciais:

A técnica de frações parciais pode ser bastante útil em várias situações. Ela consiste em modificar o integrando, quando possível, para reescrevê-lo sob a forma de uma soma de frações mais simples de serem integradas. Por exemplo, vamos calcular a integral
$$
I_{6}=\int\frac{dx}{x^{2}-1}.
$$
Reescrevemos o integrando como a soma de duas frações
$$
\frac{1}{x^{2}-1}=\frac{1}{\left(x+1\right)\left(x-1\right)}=\frac{A}{\left(x+1\right)}+\frac{B}{\left(x-1\right)},
$$
onde \(A\) e \(B\) são constantes a serem determinadas. Para encontrar estas constantes somamos os dois últimos termos e comparamos o resultado com a fração original
$$
\frac{A\left(x-1\right)+B\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{\left(A+B\right)x+B-A}{x^{2}-1}=\frac{1}{x^{2}-1},
$$
igualdade que só pode ser obtida se
$$
A+B=0,\;\; B-A=1 \Rightarrow A=-\frac{1}{2},\;B=\frac{1}{2}.
$$
Portanto o integrando é
$$
\frac{1}{x^{2}-1}=-\frac{1}{2}\frac{1}{\left(x+1\right)}+\frac{1}{2}\frac{1}{\left(x-1\right)}
$$
e a integral procurada é
$$
I_{6}=-\frac{1}{2}\int\frac{dx}{\left(x+1\right)}+\frac{1}{2}\int\frac{dx}{\left(x-1\right)}=-\frac{1}{2}\ln\left(x+1\right)+\frac{1}{2}\ln\left(x-1\right)+c,
$$
ou, usando as propriedades do logaritmo,
$$
I_{6}=\frac{1}{2}\ln\left(\frac{x-1}{x+1}\right)+c.
$$

A integral definida

Se \(F(x)\) é uma primitiva qualquer de \(f(x)\) então a integral definida de \(f\) no intervalo \(\left[a,b\right]\) é
$$
\int_{a}^{b}f(x)dx=\left.F\left(x\right)\right\vert _{a}^{b}=F(b)-F(a).
$$
Mostraremos um exemplo de integral definida realizada por substituição de variável,
$$
I_{7}=\int_{1}^{2}x\text{e}^{1-x^{2}}dx.
$$
A troca de variável agora envolve também a troca dos limites de integração:
$$
u=1-x^{2},\; du=-2xdx, \text{ quando } x=1 \text{ temos } u=0, \text{ quando } x=2 \text{ temos } u=-3.
$$
A integral então se torna
$$
I_{7}=-\frac{1}{2}\int_{0}^{-3}\text{e}^{u}du=\frac{1}{2}\int_{-3}^{0}\text{e}^{u}du=\frac{1}{2}\left.\text{e}^{u}\right\vert _{-3}^{0}=\frac{1}{2}\left(1-\frac{1}{\text{e}^{3}}\right).
$$

Sequências e Séries Infinitas

Sequências Infinitas

Definiremos uma seqüência infinita como um conjunto infinito de números que podem ser colocados em uma relação biunívoca com o conjunto dos números inteiros positivos. Denotaremos por \(\left\{ a_{n}\right\} \) a uma seqüência, sendo \(a_{n},\) com \(n=1,2,…\) os elementos individuais desta seqüência.

Exemplo 1. \(\left\{ a_{n}\right\} =\left\{ \frac{1}{n}\right\} \) é a seqüência com termo genérico \(a_{n}=1/n.\) Neste caso
$$
\left\{ a_{n}\right\} =\left\{ 1,\,\frac{1}{2},\,\frac{1}{3},\,\cdots\right\} .
$$

Definição: Dizemos que a seqüência converge para um número \(L,\) ou tem limite \(L,\) se, dado qualquer número \(\varepsilon>0\) existe um número \(N\) tal que
$$
n>N\Rightarrow\left|a_{n}-L\right|<\varepsilon.
$$
Usaremos como notação
$$
L=\lim_{n\rightarrow\infty}a_{n},\;\;\text{ ou }a_{n}\rightarrow L.
$$
Observe que, se \(\left|a_{n}-L\right|<\varepsilon\) então
$$
-\varepsilon<a_{n}-L<\varepsilon\Longleftrightarrow L-\varepsilon<a_{n}<L+\varepsilon.
$$
Portanto, dizer que uma sequência converge para \(L\) significa dizer que \(a_{n}\) fica arbitrariamente próximo de \(L\) tomando-se \(n\) suficientemente grande. Se uma seqüência não converge para nenhum número dizemos que ela diverge.

Exemplo 2. A sequência do exemplo 1, \(a_{n}=1/n\) converge para \(L=0\).

Exemplo 3. A seguinte sequência converge para \(L=2/3\)
$$
a_{n}=\frac{2n^{2}+n-1}{3n^{2}-n}.
$$
Para ver isto dividimos o numerador e o denominador por \(n^{2}\),
$$
L=\lim_{n\rightarrow\infty}\frac{2n^{2}+n-1}{3n^{2}-n}=\lim_{n\rightarrow\infty}\frac{2+1/n-1/n^{2}}{3-1/n}=\frac{2}{3},
$$
onde usamos o fato de que \(1/n\rightarrow0\) e \(1/n^{2}\rightarrow0.\)

Séries Infinitas:

Definiremos uma série infinita como a soma dos elementos de uma seqüência \(\left\{ a_{n}\right\} .\) Denotaremos esta série por
$$
S=\sum_{n=1}^{\infty}a_{n}=a_{1}+a_{2}+a_{3}+\cdots.
$$
A soma de infinitos termos não tem um significado óbvio e imediato. Para atribuir a ela um sentido não ambíguo definiremos antes a soma dos \(N\) primeiros termos da série, denominada a soma reduzida,
$$
S_{N}=\sum_{n=1}^{N}a_{n}.
$$
Observe agora que o conjunto destas somas reduzidas forma uma seqüência
$$
\left\{ S_{n}\right\}:\;\; S_{1},\,S_{2},\,S_{3},\cdots,
$$
que pode convergir ou não. Dizemos que a série infinita converge para um número \(L\) se a seqüência \(\left\{ S_{n}\right\} \) converge para \(L,\) ou seja
$$
S_{n}\rightarrow L\Longleftrightarrow\sum_{n=1}^{\infty}a_{n}=L.
$$
Caso contrário a série diverge e denotamos
$$
\sum_{n=1}^{\infty}a_{n}=\infty\;\;\text{ ou }\sum_{n=1}^{\infty}a_{n}=-\infty,
$$
conforme o caso.

Exemplo 4. Um exemplo interesssante de uma série convergente é o seguinte:
$$
\sum_{n=0}^{\infty}\frac{1}{n!}=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots=\text{e},
$$
onde, por convenção, fazemos \(0!=1.\) Este é um caso particular da série mais geral
$$
\sum_{n=0}^{\infty}\frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\text{e}^{x}.
$$
No último exemplo a função exponencial foi escrita como uma soma infinita de termos em potências de \(x.\) As séries de potências são particularmente importantes no estudo das equações diferenciais e são o motivo pelo qual revisamos aqui este tema. Voltaremos a elas em breve.

Testes de convergência

Os seguintes testes são os mais utilizados para a verificação de convergencia de uma série.

Teste da Comparação:

Se duas séries \(\Sigma a_{n}\) e \(\Sigma b_{n}\) são séries de termos não negativos (ou seja, se \(a_{n}\geq0\) e \(b_{n}\geq0\) para todo \(n\)) e \(a_{n}\leq b_{n}\) para todo \(n,\) então:

i. se \(\Sigma b_{n} \;\text{ converge } \Rightarrow \Sigma a_{n}\,\) converge,
ii. se \( \Sigma a_{n} \;\text{ diverge } \Rightarrow \Sigma b_{n}\,\) diverge.

Teste da Razão:

Se \(\Sigma a_{n}\) é uma séries de termos positivos, definimos o limite
$$
R=\lim_{n\rightarrow\infty}\frac{a_{n+1}}{a_{n}}.
$$

Então:
se \(R \lt 1 \Rightarrow \Sigma a_{n}\) converge,
se \(R \gt 1 \Rightarrow \Sigma a_{n}\) diverge,
se \(R=1,\) o teste é inconclusivo.

Teste da Integral:

Se \(f(x)\) é uma função positiva não crescente para \(x>0,\) então a série \(\Sigma f(n)\) converge se, e
somente se, a integral imprópria \(\int_{1}^{\infty}f(x)dx\) converge. Além disto vale a desigualdade

$$
\sum_{n=2}^{N}f(n)\leq\int_{1}^{N}f(x)dx\leq\sum_{n=1}^{N-1}f(n).
$$

Exemplo 5. Usamos o teste da razão para testar a convergência da série
$$
\sum_{n=1}^{\infty}\frac{n^{2}}{n!}.
$$
Temos, neste caso,
$$
a_{n}=\frac{n^{2}}{n!},\;\;a_{n+1}=\frac{\left(n+1\right)^{2}}{(n+1)!}
$$
Calculamos o limite
$$
R=\lim_{n\rightarrow\infty}\frac{\left(n+1\right)^{2}}{(n+1)!}\frac{n!}{n^{2}}=\lim_{n\rightarrow\infty}\frac{1}{n+1}\left(\frac{n+1}{n}\right)^{2}=\lim_{n\rightarrow\infty}\frac{n+1}{n^{2}}=0.
$$
Como \(R \lt 1\) concluimos que a série converge.

Séries de Maclaurin e de Taylor

Uma função que pode ser expressa em termos de uma série infinita de potências em torno do ponto \(x=x_{0},\)
$$
f(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+\cdots=\sum_{n=0}^{\infty}a_{n}\left(x-x_{0}\right)^{n}\label{seri1}
$$
é dita uma função analítica (neste ponto). Os coeficientes \(a_{n}\) podem ser obtidos do seguinte modo. Calcule o valor de \(f\) e suas derivadas no ponto \(x_{0}\)
$$
f(x_{0})=a_{0},
$$

$$
f^{\prime}(x)=a_{1}+2a_{2}\left(x-x_{0}\right)+3\left(x-x_{0}\right)^{2}+\cdots=\sum_{n=1}^{\infty}na_{n}\left(x-x_{0}\right)^{n-1},
$$

$$
f^{\prime}(x_{0})=a_{1},
$$

$$
f^{\prime\prime}(x)=2a_{2}+2.3a_{3}\left(x-x_{0}\right)+\cdots=\sum_{n=2}^{\infty}n\left(n-1\right)a_{n}\left(x-x_{0}\right)^{n-2},
$$

$$
f^{\prime\prime}(x_{0})=2a_{2}\Rightarrow a_{2}=\frac{1}{2}f^{\prime\prime}(x_{0}),
$$

$$
f^{(3)}(x)=2.3a_{3}\left(x-x_{0}\right)+\cdots=\sum_{n=3}^{\infty}n\left(n-1\right)\left(n-2\right)a_{n}\left(x-x_{0}\right)^{n-3},
$$

$$
f^{(3)}(x)=2.3a_{3}\Rightarrow a_{3}=\frac{1}{6}f^{(3)}(x_{0}).
$$
Continuando este procedimento podemos calcular qualquer um dos coeficientes da série, obtendo
$$
a_{n}=\frac{1}{n!}f^{(n)}(x_{0}).
$$
Com estes coeficientes a série é a chamada série de Taylor,
$$
f(x)=\sum_{n=0}^{\infty}\frac{1}{n!}f^{(n)}(x_{0})\left(x-x_{0}\right)^{n}\label{Taylor}
$$
onde \(f^{(n)}(x_{0})\) indica a derivada n-ésima calculada no ponto \(x=x_{0}\). Uma série de Maclaurin é uma série de Taylor que descreve o comportamento de uma função em torno do ponto \(x_{0}=0\).

Resumindo:

Sobre a série de potências \( S=\sum_{n=0}^{\infty}a_{n}\left(x-x_{0}\right)^{n} \) podemos coletar as seguintes propriedades:

(i) \(S\) converge (escolhido um valor para \(x\)) se existe o limite
$$
\lim_{N\rightarrow\infty}\sum_{n=0}^{N}a_{n}\left(x-x_{0}\right)^{n}.
$$

(ii) Se a série converge absolutamente, ou seja, existe o limite
$$
\lim_{N\rightarrow\infty}\sum_{n=0}^{N}\left|a_{n}\left(x-x_{0}\right)^{n}\right|,
$$
então ela converge.

(iii) Teste da razão: Definindo
$$
R=\lim_{n\rightarrow\infty}\left|\frac{a_{n+1}\left(x-x_{0}\right)^{n+1}}{a_{n}\left(x-x_{0}\right)^{n}}\right|=\left|x-x_{0}\right|\lim_{n\rightarrow\infty}\left|\frac{a_{n+1}}{a_{n}}\right|
$$
então a série é absolutamente convergente no ponto \(x\) se \(R \lt 1\) e é divergente se \(R \gt 1\). O teste é inconclusivo se \(R=1\).

(iv) Se a série \(S\) converge em \(x=a\) então ela converge absolutamente para \(x\) no intervalo \(\left[x-a,\;x+a\right].\) Se a série \(S\) diverge em \(x=a\) então ela diverge para \(x\) fora deste intervalo.

(v) O intervalo máximo de valores de \(x\) para os quais a série converge absolutamente é chamado o intervalo de convergência. O raio de convergência é \(\rho\) é definido de forma que \(\left[x_{0}-\rho,x_{0}+\rho\right]\) é este intervalo.

Algumas considerações finais sobre o uso do sinal de somatório podem ser úteis. O índice usado pode ser substituído de acordo com as conveniências
$$
\sum_{i=1}^{N}a_{i}=\sum_{j=1}^{N}a_{j},
$$
e as parcelas da soma podem ser agrupadas ou isoladas, como no exemplo a seguir:
$$
\sum_{i=1}^{N}a_{i}=\sum_{i=1}^{N-1}a_{i}+a_{N}=a_{1}+\sum_{i=2}^{N}a_{i},
$$

$$
\sum_{i=1}^{N}a_{i}=\sum_{i=1}^{P}a_{i}+\sum_{i=P+1}^{N}a_{i},\;\;1\lt P\lt N.
$$
Pode ser mostrado por indução que
$$
\sum_{i=1}^{N}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{N}a_{i}+\sum_{i=1}^{N}b_{i},
$$

$$
\sum_{i=1}^{N}ka_{i}=k\sum_{i=1}^{N}a_{i},\;\;\forall k\in\mathbb{R}.
$$
Se \(a_{i}=a,\) uma constante, então
$$
\sum_{i=1}^{N}a_{i}=\sum_{i=1}^{N}a=Na.
$$

Uma série de potências, se convergente, pode ser derivada termo a termo e a derivada obtida desta forma será uma representação fiel da derivada da função que ela representa:
$$
y\left(x\right)=\sum_{n=0}^{\infty}a_{n}x^{n}=a_{0}+a_{1}x+a_{2}x^{2}+\cdots+a_{r}x^{r}+\cdots,
$$

$$
y^{\prime}\left(x\right)=\sum_{n=1}^{\infty}na_{n}x^{n-1}=a_{1}+2a_{2}x+\cdots+ra_{r}x^{r-1}+\cdots,
$$

$$
y^{\prime\prime}\left(x\right)=\sum_{n=2}^{\infty}n\left(n-1\right)a_{n}x^{n-2}=2a_{2}x+\cdots+r\left(r-1\right)a_{r}x^{r-2}+\cdots.
$$

Na solução de equações diferenciais usando o método de séries de potências será útil alterar o índice para iniciar o somatório em valores diversos de \(n\). Por exemplo, podemos querer escrever a última série começando em \(n=0.\) Para fazer isto redefinimos o índice
$$
m=n-2 \Rightarrow n=m+2.
$$
A derivada segunda será escrita como
$$
y^{\prime\prime}\left(x\right)=\sum_{m=0}^{\infty}\left(m+2\right)\left(m+1\right)a_{m+2}x^{m}=\sum_{n=0}^{\infty}\left(n+2\right)\left(n+1\right)a_{n+2}x^{n},
$$
onde, no último sinal de soma restauramos o índice mudo \(n\).

Algumas Fórmulas Úteis

Para o estudo e trabalho com a matemática sempre é útil ter à disposição um bom resumo de fórmulas e propriedades matemáticas (Veja, por exemplo, Spiegel, Murray R.: Fórmulas Matemáticas, Coleção Schaum.) As seguintes fórmulas podem ser úteis na solução de equações diferenciais.

\(A\text{ sen }\lambda x+B\cos\lambda x=C\text{ sen }\left(\lambda x+\delta\right) \text{ onde } C=\sqrt{A^{2}+B^{2}},\;\delta=\text{arctg}(B/A)\)
\(\text{ sen }\left(x\pm y\right)=\text{ sen }x\cos y\pm\cos x\text{ sen }y\) \(\cos2x=\cos^{2}x-\text{ sen }^{2}x\)
\(\cos\left(x\pm y\right)=\cos x\cos y\mp\text{ sen }x\text{ sen }y\) \(\text{ sen}^{2}x=\frac{1}{2}\left(1-\cos2x\right)\)
\(\text{ sen }2x=2\text{ sen }x\cos x\) \(\cos^{2}x=\frac{1}{2}\left(1+\cos2x\right)\)
\(\text{ sen }x+\text{ sen }y=2\text{ sen }\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)\)
\(\text{ sen }x-\text{ sen }y=2\cos\left(\frac{x+y}{2}\right)\text{ sen }\left(\frac{x-y}{2}\right)\)
\(\cos x+\cos y=2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)\)
\(\cos x-\cos y=2\text{ sen }\left(\frac{x+y}{2}\right)\text{ sen }\left(\frac{x-y}{2}\right)\)
\(\text{ sen }x\text{ sen }y=\frac{1}{2}\left\{ \cos\left(x-y\right)-\cos\left(x+y\right)\right\} \)
\(\cos x\cos y=\frac{1}{2}\left\{ \cos\left(x-y\right)+\cos\left(x+y\right)\right\} \)
\(\text{ sen }x\cos y=\frac{1}{2}\left\{ \text{ sen }\left(x-y\right)+\text{ sen }\left(x+y\right)\right\} \)
\(\text{e}^{i\theta}=\cos\theta+i\text{ sen }\theta\) \(\ln xy=\ln x+\ln y\)
\(\text{e}^{x}=y\Leftrightarrow\;x=\ln y\) \(\ln\left(\frac{x}{y}\right)=\ln x-\ln y\)
\(a^{x}=\text{e}^{x\ln a}\) \(\ln x^{r}=r\ln x\)
\(\text{ senh }x=\frac{1}{2}\left(\text{e}^{x}-\text{e}^{-x}\right)\) \(\frac{d}{dx}\text{ senh }x=\cosh x\)
\(\cosh x=\frac{1}{2}\left(\text{e}^{x}+\text{e}^{-x}\right)\) \(\frac{d}{dx}\cosh x=\text{ senh }x\)
\(\cosh^{2}x-\text{ senh }^{2}x=1\)

Alguns desenvolvimentos de Taylor:

\( \left(1+x\right)^{-1}=1-x+x^{2}-x^{3}+x^{4}-\cdots\sum\limits _{n=0}^{\infty}\left(-1\right)^{n}x^{n}\),
\( \left(1-x\right)^{-1}=1+x+x^{2}+x^{3}+x^{4}-\cdots=\sum\limits _{n=0}^{\infty}x^{n}, \,\, -1\lt x \lt 1\),
\( \text{e}^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots=\sum\limits _{n=0}^{\infty}\frac{x^{n}}{n!},\; -\infty\lt x\lt \infty\),
\( \ln\left(1+x\right)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots,\;-1 \lt x \leq 1\),
\( \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\frac{x^{7}}{7}+\cdots,\;-1\lt x \lt 1\),
\( \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots,\;-\infty\lt x\lt \infty\),
\( \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots,\;-\infty\lt x\lt \infty\).

Bibliografia

  1. ARNOLD, V.: Equações Diferenciais Ordinárias, Editora Mir, Moscou, 1985.
  2. BOYCE, W.; Di PRIMA, R.: Equações Diferenciais Elementares e Problemas de Valores de Contorno, Guanabara Koogan, Rio de Janeiro, 1994.
  3. BUTKOV, E.; Física Matemática, Guanabara Dois, Rio de Janeiro, 1968.
  4. CHURCHILL, R., BROWN, J.: Fourier Series and Boundaries Value Problems, McGraw-Hill, New York, 1987.
  5. COURANT, R.; JOHN, F., Introduction to Calculus and Analysis, Wiley-Interscience, New York, 1965.
  6. CUSHING, J. T.; Applied Anaytical Mathematics for Physical Scientists Wiley, Sons, New York, 1975.
  7. FIEDLER-FERRARA, N., PRADO, C.: Caos, Uma Introdução, Edgard Blucher, São Paulo,1994.
  8. FLEMMING, D., GONÇALVES, B.: Cálculo A, Makron, São Paulo, 1992.
  9. KREYSZIG, E.: Matemática Superior, Vol 1, Livro Técnico e Científico Ed. S.A., Rio de Janeiro, 1976.
  10. MATOS, M. P.: Séries e Equações Diferenciais, Prentice Hall, São Paulo, 2001.
  11. ZILL, D.; CULLEN, M.: Equações Diferenciais, Makon Books, São Paulo, 2001.

Leave a Reply

Your email address will not be published. Required fields are marked *