Os professores de matemática hoje se deparam com uma tarefa difícil: a motivação de seus alunos para os tópicos mais áridos desta ciência. Este problema tem diversas causas que vão desde os problemas com a qualidade geral do ensino até, por exemplo, a crença de que “está tudo pronto”, de que nada mais resta a desenvolver ou a descobrir. É comum ouvir reclamações de que um determinado cálculo pode ser realizado rapidamente em um computador e que, portanto, não seria necessário aprender a utilizar aquela técnica. No entanto sabemos que a tecnologia progride a passos rápidos e que o volume de artigos e novas idéias científicas nunca foi tão grande como hoje. Por isto, procurando contribuir para um melhor entendimento de nosso propósito como professores e estudantes de matemática, me proponho perguntar: por que devemos estudar matemática? Para que serve, afinal, a matemática?
Em primeiro lugar a matemática serve para descrever o mundo de uma forma rigorosa e precisa. Ela é uma linguagem, uma parte essencial na formação de modelos. Um modelo é um conjunto de definições e conceitos que busca descrever de maneira tão completa e fidedigna quanto possível o mundo natural ou uma parte dele, ou ainda processos artificiais criados pela crescente complexidade dos relacionamentos humanos. Esses modelos, além de serem tão completos quanto possível e possuírem coerência lógica, devem ser testados, comparados com o sistema real que ele pretende descrever por meio da observação ou da experimentação. Em caso de disparidades entre a descrição e a observação empírica o modelo deverá ser refeito e aperfeiçoado, ou mesmo abandonado se necessário.
Modelos são representações e não o objeto ou sistema de objetos descritos. Eles podem ser muito simples, como o modelo que representa o conjunto dos números naturais, {1, 2, 3, …}. Estes números foram usados, entre outras coisas, para contar quantas cabeças de gado um homem primitivo tinha e como ele poderia troca-las por alimentos ou outros bens. Nesta contagem ele pode ter usado pedrinhas (daí a palavra cálculo) para representar seus animais, estabelecendo uma relação biunívoca entre animais e pedras. Se possuía menos que uma dezena de bois e vacas, é possível que tenha usado apenas os dedos das mãos (de onde surgiu a palavra dígito). Embora simples este modelo não é trivial. É possível representar com um número natural quantos grãos de areia existem na Terra? (A resposta é sim!) E, principalmente, este modelo é incompleto.
Se pretendermos que nossas negociações incluam dívidas (e, como consequência, o calote!) teremos que expandir o modelo de forma a abarcar os números negativos e o zero, resultando no conjunto dos inteiros. O conjunto dos inteiros é ainda menos óbvio e mais abstrato que o dos naturais pois não temos conhecimento de alguma coisa concreta que exista em quantidades negativas! E mesmo este novo conjunto não é completo e não suficiente. Se quisermos oferecer como parte dos negócios uma fração de um terreno ou um pedaço de um queijo gigante teremos que ampliar o conjunto dos inteiros para outro conjunto que contenha frações, o conjunto dos racionais.
Esse parece agora ser um conjunto bem bonito e completo, o conjunto dos racionais, não tivessem os gregos descoberto que alguns números importantes não se encaixam dentro deles. A diagonal de um quadrado cujos lados medem um (em qualquer sistema de unidades) não é um racional e nem a razão entre a circunferência e o raio de um círculo (igual a 2 pi) não são números racionais. A experiência e a necessidade de descrever coisas pedem um modelo mais amplo. Por isto surgiram os irracionais, os números que não podem ser postos sob forma de uma fração. Racionais e irracionais, juntos, formam o conjunto dos números reais.
Estamos agora, a esta altura do desenvolvimento dos modelos matemáticos, muito longe dos conceitos intuitivos e primários. O conjunto dos números reais possui propriedades intrigantes e muito pouco óbvias. Entre dois números reais quaisquer existe uma infinidade de outros reais. Sua representação gráfica, a reta real, é infinita em ambas as direções e os pontos se empacotam de forma perfeita sem deixar nenhum furo ou imperfeição. O conceito é extremamente poderoso, possui coerência lógica e serve como modelo para a descrição de grande quantidade de objetos do mundo real. No entanto, não é tão claro se existe qualquer objeto no universo real que seja um bom representante desse modelo. Ele é útil para fazer descrições aproximadas de objetos que existem: se medirmos a distância entre duas cidades ou o comprimento de um fio estaremos ignorando, de forma totalmente apropriada e válida, as imperfeições do fio e da estrada que certamente não são contínuos como a reta real. Se ampliarmos com um potente microscópio uma seção do fio, veremos que ele, sendo de metal, é feito de granulações bem organizadas apresentando grandes vãos entre os átomos de sua estrutura. Isto não nos impedirá, no entanto, de usar réguas comuns para medir seu comprimento.
Observamos aqui uma tendência. O conjunto dos reais engloba os racionais, que por sua vez engloba os inteiros, que contém os naturais. O progresso do conhecimento se dá na direção da ampliação dos conceitos e na quebra das antigas barreiras. E, diferente do que se costuma pensar, os conceitos antigos, desde que bem estabelecidos, não são revogados como se revoga uma lei caduca e sim ampliados no que diz respeito a seu domínio de aplicação. Uma observação importante deve ser acrescentada aqui. Neste ponto do desenvolvimento da matemática (e mesmo antes disto, na verdade!), e da civilização humana como um todo, já teremos a necessidade de escolas. Precisaremos tirar as crianças de seus brinquedos e colocá-las em salas de aulas para garantir que o conhecimento acumulado por gerações de estudiosos, teóricos ou pessoas pragmáticas e engenhosas, seja repassado para as novas gerações. E, na medida em que cresce o domínio da ciência e as exigências das aplicações, mais tempo as pessoas deverão se dedicar ao estudo e a preparação para seu desempenho na vida e no ambiente de trabalho. Este é o preço que pagamos por termos descido das árvores e começado a usar ossos como ferramentas, modelar pedras para servir como instrumentos e armas, aprendido a domesticar o fogo.
Os modelos, é claro, passaram a representar objetos de complexidade crescente. Na planilha do engenheiro um prédio é um modelo de equilíbrio de forças onde a matemática permite que os pesos, as tensões no concreto e nos ferros se equilibrem para deixar estável a construção. Podemos descrever como se comporta uma mola mergulhada em um meio viscoso e sujeita a impactos externos, exatamente como existe no sistema de molas e amortecedores de um automóvel. O sistema é simples mas sua descrição completa exige um tópico matemático sofisticado, o das equações diferenciais. Queremos saber como uma corrente de elétrons se move dentro de materiais semicondutores. Para isto precisamos de um modelo bastante elaborado da física, a mecânica quântica. Com ela construímos relógios digitais, computadores e discos rígidos, entre outras máquinas diversas.
Grande parte das pessoas hoje, exceto aqueles excluídos da modernidade pela pobreza, usa direta ou indiretamente um satélite artificial para telecomunicações colocado em órbita geo-estacionária. Esses satélites giram em torno de nosso planeta com uma velocidade tal que parecerá, para um observador fixo na terra ou para a antena de seu receptor de TV, como estacionário em pleno ar. Para colocar um artefato desses em órbita é necessário usar o modelo da gravitação universal criado por Newton e, em alguns casos, será até mesmo necessário fazer correções usando o modelo da relatividade de Albert Einstein. Muita matemática está envolvida e provavelmente computadores sofisticados serão empregados nessas operações.
Exemplos de modelos mais prosaicos, mas igualmente úteis, podem ser encontrados na economia, no estudo das variações de preços dos produtos oferecidos ao consumidor, da inflação, do valor de um depósito feito meses atrás na caderna de poupança ou outra aplicação mais rentável. Modelos análogos serão usados para compreender a disseminação de uma doença, o contágio por um vírus ou a divulgação de um boato. Um modelo pode ser simples, como aquele que descreve os valores disponíveis em uma aplicação bancária com rendimento fixo, ou complicado e extenso como seria o modelo, ainda não desenvolvido, que descreve as oscilações nas bolsas de valores.
Tais modelos são úteis no presente, essenciais para a manutenção da vida moderna, complexa como ela se tornou. Mas eles têm uma habilidade extra: nos permitem prever o futuro. Um bom modelo descreve o que existe hoje e aponta para o que existirá amanhã, mesmo que esta previsão só possa ocorrer em termos probabilísticos, em alguns casos.
Um astrônomo poderá ver hoje em seu telescópio uma grande pedra varrendo o espaço em grande velocidade e decidir, usando os modelos matemáticos à sua disposição, se esta pedra colidirá ou não com nosso planeta. Como exemplo, a colisão do asteróide Shoemaker-Levi com o planeta Júpiter foi prevista com grande antecedência. Um bom modelo estelar será hábil para dizer, supondo conhecidas as condições atuais da estrela, em que estágio de sua evolução ela se encontra e por que etapas passará no futuro. Podemos, é claro, optar por uma visão poética dessa mesma estrela e isto será, sem dúvida, muito bom de se fazer. Mas, teremos perdido a habilidade de descobrir que essa estrela terá um dia esgotado seu combustível nuclear, que explodirá e poderá se tornar um buraco negro.
Finalmente chegamos àquela que considero ser a utilidade mais fina e essencial da matemática. Supridas as necessidades básicas do ser humano, garantida sua sobrevivência, seu anseio pela procriação e preservação da espécie e seu nível mínimo de conforto, a mente se volta para o conhecimento pelo conhecimento. Em um nível mais refinado não tem sentido perguntar para que serve a matemática. Por um lado um teorema serve porque é correto, porque é uma verdade. Por outro lado inúmeras teorias matemáticas foram desenvolvidas de forma puramente acadêmica, ou filosóficas, e muito mais tarde foram usadas em aplicações espetaculares.
Chegamos hoje a um estado de desenvolvimento da civilização onde a diversidade parece ser essencial. Precisamos de técnicos, de mão-de-obra braçal, de teóricos e de filósofos para enfrentar os desafios múltiplos e prementes por que passamos hoje. Um exemplo simples pode ser dado para corroborar esta afirmação: um pouco de ética bastaria para resolver grande parte das mazelas em nosso pais e conflitos pelo mundo afora e, neste sentido, precisamos de cidadãos filósofos. A experiência da história mostra que os povos que fizeram uso puramente pragmático da matemática entraram, ou já estavam, em declínio, enquanto os tempos áureos de qualquer povo, como na Grécia clássica, foram sempre pontuados pela livre investigação em todas as áreas a eles acessíveis, particularmente na matemática.
Vivemos em um período extraordinário da história da civilização. Temos hoje a habilidade para construir modelos científicos que descrevem o universo globalmente, que lançam perguntas sobre sua origem e destino e apontam para suas respostas. Estamos desvendando o código primário da existência humana através do projeto Genoma. Por outro lado, possuímos armas de destruição em massa e o poder para alterar de forma radical o clima no planeta. Os meios de transporte e as telecomunicações estão destruindo as barreiras nacionais e este processo não é suave ou indolor, particularmente para as nações mais pobres e com desenvolvimento tecnológico pouco consolidado.
A inserção em um mundo sem fronteiras exige profissionais de primeira linha, com formação simultaneamente profunda e ampla. Refletir sobre o avanço da ciência e da tecnologia, sobre os problemas que ela resolve e outros que ela causa, e participar deste progresso é essencial para que a sociedade brasileira possa se inserir na cidadania global em nível de igual participação e oportunidade.